首页 | 本学科首页   官方微博 | 高级检索  
     


Characteristics of high heating rate biomass chars prepared under N2 and CO2 atmospheres
Authors:A.G. Borrego   L. Garavaglia  W.D. Kalkreuth
Affiliation:aInstituto Nacional del Carbón, CSIC. Ap. 73. 33080 Oviedo, Spain;bInstituto de Geociências, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil
Abstract:Partial substitution of coal by biomass in combustion systems in conjunction with advanced technologies for CO2 capture and storage may result in a significant reduction of greenhouse gases emissions. This study investigates three biomass chars produced from rice husk, forest residuals and wood chips under N2 and CO2 atmospheres using a drop tube furnace (DTF) heated at 950 °C. The char constitutes an unburned residue which has been devolatilized under conditions resembling in thermal history those in full scale boilers. Higher weight losses were achieved under N2 than under CO2 for each type of biomass, and the highest weight loss was that of wood chips biomass, followed by forest residuals and then rice husk. The results indicate significant morphological differences between the biomass chars produced. The wood chips yielded thick-walled chars with a cenospheric shape very similar to those of low-rank vitrinite. The forest residual chars were angular in shape and often had a tenuinetwork structure, while the rice husk chars retained their vegetal structure. Overall, the studied biomass chars can be described as microporous solids. However, in the case of the rice husk, the silica associated to the char walls was essentially mesoporous, increasing the adsorption capacity of the rice husk chars. The atmosphere in the DTF affects the development of porosity in the chars. The pore volumes of the rice husk and forest residual chars prepared under a CO2 atmosphere were higher than those of chars prepared under a N2 atmosphere, whereas the opposite was the case with the wood chip chars. The chars that experienced the most drastic devolatilization were those with the lowest intrinsic reactivity. This indicates a more efficient reorganization of the chemical structure that reduces the number of active sites available for oxygen attack. Overall a similar morphology, optical texture, specific surface area and reactivity were found for the biomass chars generated under N2 and CO2, which is a similar result to that obtained for coal chars.
Keywords:Biomass chars   Biomass reactivity   Biomass pyrolysis   High heating rate chars   Oxy-fuel
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号