首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的滑移隔震结构智能半主动控制
引用本文:樊剑,张艳成,魏俊杰. 基于神经网络的滑移隔震结构智能半主动控制[J]. 地震工程与工程振动, 2007, 27(1): 130-135
作者姓名:樊剑  张艳成  魏俊杰
作者单位:华中科技大学,土木工程与力学学院,湖北,武汉,430074;华中科技大学,土木工程与力学学院,湖北,武汉,430074;华中科技大学,土木工程与力学学院,湖北,武汉,430074
基金项目:湖北省自然科学基金项目(2006ABA067)
摘    要:考虑上部结构的刚度和阻尼,使用神经网络控制算法计算基底摩擦力的大小,研究了滑移隔震结构的半主动控制。对计算实例的分析表明,通过半主动控制的滑移隔震结构不但具有较好的隔震效果,且能有效地减小基底的最大滑移量及残余位移。为对比各种控制方法的控制效果,文中还利用Bang-Bang控制和瞬时最优控制算法对滑移隔震结构进行了半主动控制。对比分析表明,基于神经网络控制算法的控制效果优于其它控制算法,具有反馈量少,稳健性强等特点。

关 键 词:滑移隔震结构  半主动控制  神经网络
文章编号:1000-1301(2007)01-0130-06
修稿时间:2006-05-152006-08-22

Semi-active intelligent control of sliding structure based on artificial neural network
Fan Jian,Zhang Yancheng,Wei Junjie. Semi-active intelligent control of sliding structure based on artificial neural network[J]. Earthquake Engineering and Engineering Vibration, 2007, 27(1): 130-135
Authors:Fan Jian  Zhang Yancheng  Wei Junjie
Affiliation:College of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract:Considering the stiffness and the damping of super structure,this paper proposes an intelligent semi-active strategy to control the base friction force of sliding structures by artificial neural network.Numerical results show that the friction-controllable sliding structures not only have good isolation effect,but also reduce the maximum slippage and residual base displacement.In order to compare the control effect of different methods,the authors use Bang-Bang control method and instantaneous optimal control method to control the sliding structures.Simulation results clearly indicate that the artificial neural network control method has some advantages when comparing with other methods,such as small quantity to be fed back,robust characteristic and so on.
Keywords:sliding structure  semi-active intelligent control  artificial neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号