首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the formation of coronal cavities
Authors:C -H An  S T Suess  E Tandberg-Hanssen  R S Steinolfson
Institution:(1) NASA/Marshall Space Flight Center, Space Science Laboratory, ES52, 35812 Huntsville, AL, U.S.A.;(2) U.C., Irvine, U.S.A.
Abstract:We present a theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence. We argue that the formation of a coronal cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support.We initiate the study by considering the stability of condensation modes of a plasma in the coronal streamer model obtained by Steinolfson et al. (1982) using a 2-D, time dependent, ideal MHD computer simulation; they calculated the dynamic interaction between outward flowing solar wind plasma and a global coronal magnetic field. In the final steady state, they found a density enhancement in the closed field region with the enhancement increasing with increasing strength of the magnetic field. Our stability calculation shows that if the density enhancement is higher than a critical value, the plasma is unstable to condensation modes. We describe how, depending on the magnetic field configuration, the condensation may produce a coronal cavity and/or initiate the formation of a prominence.NRC Research Associate.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号