首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Predicting water yield from a mountain ash forest catchment using a terrain analysis based catchment model
Authors:RA Vertessy  TJ Hatton  PJ O'Shaughnessy  MDA Jayasuriya
Institution:

a CSIRO Division of Water Resources, P.O. Box 1666, Canberra, A.C.T. 2601, Australia

b Melbourne Water, Box 4342, Melbourne, Vic. 3001, Australia

Abstract:The structure, capabilities and performance of a distributed parameter hydrologic model are described. The model, called Topog-Yield, permits a transient analysis of unsaturated-saturated flow and evapotranspiration to be performed across complex terrain using a one-dimensional framework. It is applied to a 0.32 km2 mountain ash (Eucalyptus regnans) forest catchment in the central Victorian highlands, Australia. We compare observed and predicted daily runoff values for the site over a continuous 12 year period (1972–1983) when the catchment vegetation was in an undisturbed climax condition. All input parameter values were based on published or measured data, although some variables were adjusted within the range of known variability to yield a best fit between predicted and observed streamflow in the first year of simulation, 1972. Although the model was ‘calibrated’ for the first year, all variables other than climatic inputs remained fixed for the following 11 years. Modelled and observed daily runoff values compare well throughout the period of simulation, despite a wide range of climatic conditions. When modelled daily runoff values were lumped on a monthly basis, the model was able to explain 87% of the variation in observed monthly streamflows over the 12 year period. Modelled annual runoff was within ±5% of observed values for 6 of the 12 years of record. Annual runoff prediction errors exceeded ±10% of observed values in only 2 of the 12 years. By the end of the 12 year simulation, the model had over-predicted runoff by less than 5%. Input data requirements and model results are discussed in the light of a preliminary sensitivity analysis.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号