首页 | 本学科首页   官方微博 | 高级检索  
     


Integrated Analysis on Gravity and Magnetic Fields of the Hailar Basin, NE China: Implications for Basement Structure and Deep Tectonics
Authors:Bin Sun  Liangshu Wang  Ping Dong  YongJing Wu  Changbo Li  Bo Hu  Chong Wang
Affiliation:1. School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210093, China
Abstract:The Hailar Basin is one of the typical basins among the NE China Basin Groups, which is situated in the east of East Asia Orogene between the Siberia Plate and the North China Plate. Based on the detailed analysis of magnetic, gravity, petrophysical, geothermal and seismological data, we separate the Gravity and Magnetic Anomalies (GMA) into four orders using Wavelet Multi-scale Decomposition (WMD). The apparent depths of causative sources were then assessed by Power Spectrum Analysis (PSA) of each order. Low-order wavelet detail anomalies were used to study the basin’s basement structure such as major faults, the basement lithology, uplifts and depressions. High-order ones were used for the inversion of Moho and Curie discontinuities using the Parker method. The results show that the Moho uplifting area of the Hailar Basin is located at the NE part of the basin, the Curie uplifting area is at the NW part, and neither of them is consistent with the basin’s sedimentary center. This indicates that the Hailar Basin may differ in basin building pattern from other middle and eastern basins of the basin groups, and the Hailar Basin might be of a passive type. When the Pacific Plate was subducting to NE China, the frontier of the plate lying on the mantle transition zone didn’t pass through the Great Khingan Mountains region, so there is not an obvious magma upwelling or lithospheric extension in the Hailar Basin area. Finally, based on the seismological data and results of WMD, a probable 2D crust model is derived from an across-basin profile using the 2D forward modeling of the Bouguer gravity anomaly. The results agree with those from seismic inversion, suggesting WMD is suitable for identifying major crustal density interfaces.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号