首页 | 本学科首页   官方微博 | 高级检索  
     

一种适用于多类别遥感图象分类的新方法——复合神经网络分类方法
引用本文:李厚强,王宜主,刘政凯. 一种适用于多类别遥感图象分类的新方法——复合神经网络分类方法[J]. 遥感学报, 1997, 1(4): 257-261
作者姓名:李厚强  王宜主  刘政凯
作者单位:中国科技大学信息处理中心,合肥 230027;中国科技大学信息处理中心,合肥 230027;中国科技大学信息处理中心,合肥 230027
基金项目:国家自然科学基金,基金批准号49371045
摘    要:该文提出一种由多层神经网络与自组织神经网络相结合进行类别遥感图象分类的复合神经网络分类方法。第1步半训练样本按其统计特征分成若干组,用不同级别的训练样本分别训练BP网络。第2步将这些训练好的BP网络并联构成有监督分类器,对遥感图象进行有监督分类。第3步用BP网络的分类结果对Kohonen网络进行自组织训练,用训练好的Kohonen网络构造无监督分类器,对遥感图象进行细分。通过对SPOT遥感图象的分

关 键 词:遥感 多类别遥感 图像分类 复合神经网络
收稿时间:1996-12-26
修稿时间:1997-05-19

A New Method for Multicategory Remote Sensing Image Recognition by Complex Neural Network
Li Houqiang,Wang Yizhu and Liu Zhengkai. A New Method for Multicategory Remote Sensing Image Recognition by Complex Neural Network[J]. Journal of Remote Sensing, 1997, 1(4): 257-261
Authors:Li Houqiang  Wang Yizhu  Liu Zhengkai
Affiliation:Information Processing Center, University of Science and Technology of China, Hefei, 230027;Information Processing Center, University of Science and Technology of China, Hefei, 230027;Information Processing Center, University of Science and Technology of China, Hefei, 230027
Abstract:This article presents a new approach to pattern recognition of multicategory remote sensingimages by using multilayered neural network and self-organizing neural network. BP algorithm is atypical supervised classification method by which multilayered neural network can learn previousknowledge about patterns of remote sense image from trainning sample set and form complicatednonlinear decision function automatically. Kohonen neural network, which may produce what is calledself- organizing feature maps similar to those that occur in the human brain, can be used as anunsupervised classifier. In this article, considering the features of multicategory remote sensing images,we synthesize the advantages of these two methods to form a complex classifier. First, trainningsamples are divided into several groups to train the corresponding BP networks which parallel toconstruct supervised classifier. Second, the remote sensing image is classified into many gross classesby the supervised classifier. Third, use the result of the supervised classifier to train Kohonen networkand each gross class is classified into some sub-classes by the trained Kohonen network. This methodhas been used in the classification of a SPOT remote sensing image, the number of recognizableclasses is 48 while the average right rate of the supervised classification is 91.6%. The experimentalresults verify the usefulness of this approach.
Keywords:BP network   Kohonen network   Supervised classification   Unsupervised classification
本文献已被 维普 等数据库收录!
点击此处可从《遥感学报》浏览原始摘要信息
点击此处可从《遥感学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号