首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model
Authors:E Marchand  T Müller  P Knabner
Institution:1. Department of Mathematics, Applied Mathematics 1, University of Erlangen-Nuremberg, Cauerstr. 11, 91058, Erlangen, Germany
Abstract:This paper is a prequel to that of Marchand et al. (Comput Geosci 16:691–708, 2012), where an efficient and accurate hybrid-mixed finite element approximation for a system of time-dependent nonlinear conservation equations has been formulated, implemented, and tested, which are general enough to represent most of the existing formulations for two-component liquid–gas flow in porous medium with phase exchange, also allowing for any (dis)appearance of one of the phases. Temperature variation is neglected, but capillary effects are included by extended Darcy’s law, and Fickian diffusion is taken into account. The efficiency and stability of the numerical method of Lake (1989) relies on an equivalent reformulation of the otherwise commonly used model in terms of new principal variables and subsequent static (flash) equations allowing more generally for any (dis)appearance of one of the phases without the need of variable switching or unphysical quantities. In particular, the formulation in terms of complementarity conditions allows for an efficient and stable solution by the semismooth Newton’s method.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号