首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computing gravity-driven viscous fingering in complex subsurface geometries: A high-order discontinuous Galerkin approach
Authors:A Gerstenberger  G Scovazzi  S S Collis
Institution:1. Numerical Analysis and Applications Department, Sandia National Laboratories, P.O. Box 5800, MS 1320, Albuquerque, NM, 87185-1320, USA
2. Civil and Environmental Engineering Department, Duke University, Room 121 Hudson Hall, Box 90287, Durham, NC, 27708-0287, USA
3. Numerical Analysis and Applications Department, Sandia National Laboratories, P.O. Box 5800, MS 1319, Albuquerque, NM, 87185-1319, USA
Abstract:We present a formulation of the discontinuous Galerkin method aimed for simulations of gravity-driven viscous fingering instabilities occurring in porous media flow. Specifically, we are targeting applications characterized by complex geometrical features. Viscous fingering instabilities play a very important role in carbon sequestration in brine aquifers. The proposed method has the ability to preserve high order of accuracy on completely unstructured meshes, a feature that makes it ideal for high-fidelity computations of the challenging fingering flow patterns and very complex geometries of actual reservoirs and aquifers. An extensive set of numerical computations is also included, to confirm the stability, accuracy, and robustness of the method.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号