首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Second-order derivatives in a local frame developed in spheroidal and spherical coordinates
Authors:Georges Blaha
Institution:(1) Nova University Ocean Sciences Center, 8000 North Ocean Drive, 33004 Dania, Florida
Abstract:Second-order derivatives of a general scalar function of position (F) with respect to the length elements along a family of local Cartesian axes are developed in the spheroidal and spherical coordinate systems. A link between the two kinds of formulations is established when the results in spherical coordinates are confirmed also indirectly, through a transformation from spheroidal coordinates. IfF becomesW (earth's potential) the six distinct second-order derivatives—which include one vertical and two horizontal gradients of gravity—relate the symmetric Marussi tensor to the curvature parameters of the field. The general formulas for the second-order derivatives ofF are specialized to yield the second-order derivatives ofU (standard potential) and ofT (disturbing potential), which allows the latter to be modeled by a suitable set of parameters. The second-order derivatives ofT in which the property ΔT=0 is explicitly incorporated are also given. According to the required precision, the spherical approximation may or may not be desirable; both kinds of results are presented. The derived formulas can be used for modeling of the second-order derivatives ofW orT at the ground level as well as at higher altitudes. They can be further applied in a rotating or a nonrotating field. The development in this paper is based on the tensor approach to theoretical geodesy, introduced by Marussi 1951] and further elaborated by Hotine 1969], which can lead to significantly shorter demonstrations when compared to conventional approaches.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号