首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molybdenum Isotopic Composition of Individual Presolar Silicon Carbide Grains from the Murchison Meteorite
Institution:1. Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA;2. Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, Illinois 60439, USA;3. Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA;4. Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, USA;5. McDonnell Center for the Space Sciences, Washington University, St. Louis, Missouri 63130, USA;1. Department of Earth and Planetary Sciences, MSC03-2040, University of New Mexico, Albuquerque, NM 87131, USA;2. Lunar and Planetary Institute, USRA, 3600 Bay Area Boulevard, Houston, TX 77058, USA;3. ARES, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, USA;4. Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;5. Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA;1. Department of Natural History Sciences, Hokkaido University, Sapporo 060-0810, Japan;2. Division of Earth-System Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea;3. Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, Sapporo 001-0021, Japan;4. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan;1. Institut für Geologie und Mineralogie, Universität zu Köln, Zülpicherstr. 49b, 50674 Cologne, Germany;2. Steinmann-Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany;3. Analytic Radioactive Materials, Hot Laboratory Division, Paul Scherrer Institute, 5232 Villigen, Switzerland;1. School of Ocean, Earth Science and Technology, Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, USA;2. Geoscience Institute/Mineralogy, Goethe University Frankfurt, Germany;3. Centre for Star and Planet Formation, University of Copenhagen, Denmark;4. Institute of Meteoritics, University of New Mexico, USA;5. Division of Geological and Planetary Sciences, California Institute of Technology, USA;6. Department of Geology, School of Earth and Environment, Rowan University, USA;7. Department of the Geophysical Sciences, The University of Chicago, USA;8. Enrico Fermi Institute, The University of Chicago, USA;9. Chicago Center for Cosmochemistry, USA;1. Centre de Science Nucléaire et de Science de la Matière, CNRS/IN2P3 – Université Paris-Sud UMR 8609, Bâtiment 104, 91405 Orsay Campus, France;2. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590, Sorbonne Université, Museum National d''Histoire Naturelle, CNRS, Univ. Pierre et Marie Curie, IRD, 61 rue Buffon, 75005 Paris, France;3. Department of Earth, Planetary, and Space Sciences, University of California – Los Angeles, 595 Charles Young Drive East, Los Angeles, CA 90095-1567, USA;4. Laboratoire Magma et Volcans, UMR 6524, Univ. Lyon, Univ. Jean Monnet Saint-Etienne, CNRS, Univ. Clermont Auvergne, IRD, 23 rue du Dr. Paul Michelon, 42023 Saint-Etienne, France;5. Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany
Abstract:We report the isotopic composition of molybdenum in twenty-three presolar SiC grains from the Murchison meteorite which have been measured by resonant ionization mass spectrometry (RIMS). Relative to terrestrial abundance (and normalized to s-process-only 96Mo), the majority of the analyzed grains show strong depletions in the p-process isotopes 92Mo and 94Mo and the r-process isotope 100Mo. Sixteen of these grains have δ-values <?600% for these three isotopes. The observed isotopic patterns of Mo from mainstream SiC grains clearly reveal the signature of s-process nucleosynthesis. Three-isotope plots of all grain data (δiMo vs. δ92Mo) show strong linear correlations with characteristic slopes. This finding suggests mixing of solar-like material and pure s-process material in the parent stars. Comparison with evolutionary calculations of nucleosynthesis and mixing in red giants suggests that low-mass thermally-pulsed symptotic giant branch (TP-AGB) stars are the most likely site for the observed s-process nucleosynthesis.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号