首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An efficient multivariate random field generator using the fast Fourier transform
Institution:1. Associate Professor, Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China;2. MPhil student, Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China;3. Professor, Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China;4. PhD candidate, Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China;5. Assistant Professor, College of Civil Engineering and Architecture, Wenzhou University, Wenzhou 325035, PR China;6. Professor, School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, PR China;7. Professor, State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract:It is often convenient to use synthetically generated random fields to study the hydrologic effects of spatial heterogeneity. Although there are many ways to produce such fields, spectral techniques are particularly attractive because they are fast and conceptually straightforward. This paper describes a spectral algorithm for generating sets of random fields which are correlated with one another. The algorithm is based on a discrete version of the Fourier-Stieltjes representation for multidimensional random fields. The Fourier increment used in this representation depends on a random phase angle process and a complex-valued spectral factor matrix which can be readily derived from a specified set of cross-spectral densities (or cross-covariances). The inverse Fourier transform of the Fourier increment is a complex random field with real and imaginary parts which each have the desired coveriance structure. Our complex-valued spectral formulation provides an especially convenient way to generate a set of random fields which all depend on a single underlying (independent) field, provided that the fields in question can be related by space-invariant linear transformations. We illustrate this by generating multi-dimensional mass conservative groundwater velocity fields which can be used to simulate solute transport through heterogeneous anisotropic porous media.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号