首页 | 本学科首页   官方微博 | 高级检索  
     


A numerical investigation of the one-dimensional Newtonian three-body problem
Authors:Seppo Mikkola  Jarmo Hietarinta
Affiliation:(1) Turku University Observatory and Department of Physics, University of Turku, 20500 Turku, Finland
Abstract:The one-dimensional Newtonian three-body problem is known to have stable (quasi-)periodic orbits when the masses are equal. The existence and size of the stable region is discussed here in the case where the three masses are arbitrary. We consider only the stability of the periodic (generalized) Schubart's (1956) orbit. If this orbit is linearly stable it is almost always surrounded by a region of stable quasi-periodic orbits and the size and shape of this stable region depends on the masses. The three-dimensional linear stability of the periodic orbits is also determined. Final results show that the region of stability has a complicated shape and some of the stable regions in the mass-plane are quite narrow. The non-linear three-dimensional stability is studied independently by extensive numerical integrations and the results are found to be in agreement with the linear stability analysis. The boundaries of stable region in the mass-plane are given in terms of polynomial approximations. The results are compared with a similar work by Héenon (1977).We thank the referee for pointing out this reference to us.
Keywords:three-body problem  collinear motion  periodic orbits  stability of motion
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号