首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Semi-two-dimensional numerical model for river morphological change prediction: theory and concepts
Authors:Tew-Fik Mahdi
Institution:(1) Département des génies civil, géologique et des mines (CGM), école Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC, H3C 3A7, Canada
Abstract:This paper presents a new numerical model for river morphological predictions. This tool predicts vertical and lateral cross-section variations for alluvial rivers, which is an important task in predicting the associated hazard zone after a flood event. The Model for the HYdraulics of SEdiments in Rivers, version 1.0 (MHYSER 1.0) is a semi-two-dimensional model using the stream tubes concept to achieve lateral variations of velocity, flow stresses, and sediment transport rates. Each stream tube has the same conveyance as the other ones. In MHYSER 1.0, the uncoupled approach is used to solve the set of conservation equations. After the backwater calculation, the river is divided into a finite number of stream tubes of equal conveyances. The sediment routing and bed adjustments calculations are accomplished separately along each stream tube taking into account lateral mass exchanges. The determination of depth and width adjustments is based on the minimum stream power theory. Moreover, MHYSER 1.0 offers two options to treat riverbank stability. The first one is based on the angle of repose. The bank slope should not be allowed to increase beyond a certain critical value supplied to MHYSER 1.0. The second one is based on the modified Bishop’s method to determine a safety factor evaluating the potential risk of a landslide along the river bank.
Keywords:River natural hazards  Sediment routing  Semi-2-D numerical model  Stream tubes  Stream power minimization  Riverbank stability
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号