首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Incorporating subjective and stochastic uncertainty in an interactive multi-objective groundwater calibration framework
Authors:Abhishek Singh  Douglas D Walker  Barbara S Minsker  Albert J Valocchi
Institution:1. INTERA, Inc., 1812 Centre Creek Dr., Austin, TX, 78727, USA
2. Illinois State Water Survey, 2204 Griffith Drive, Champaign, IL, 61820, USA
3. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
Abstract:The interactive multi-objective genetic algorithm (IMOGA) combines traditional optimization with an interactive framework that considers the subjective knowledge of hydro-geological experts in addition to quantitative calibration measures such as calibration errors and regularization to solve the groundwater inverse problem. The IMOGA is inherently a deterministic framework and identifies multiple large-scale parameter fields (typically head and transmissivity data are used to identify transmissivity fields). These large-scale parameter fields represent the optimal trade-offs between the different criteria (quantitative and qualitative) used in the IMOGA. This paper further extends the IMOGA to incorporate uncertainty both in the large-scale trends as well as the small-scale variability (which can not be resolved using the field data) in the parameter fields. The different parameter fields identified by the IMOGA represent the uncertainty in large-scale trends, and this uncertainty is modeled using a Bayesian approach where calibration error, regularization, and the expert’s subjective preference are combined to compute a likelihood metric for each parameter field. Small-scale (stochastic) variability is modeled using a geostatistical approach and added onto the large-scale trends identified by the IMOGA. This approach is applied to the Waste Isolation Pilot Plant (WIPP) case-study. Results, with and without expert interaction, are analyzed and the impact that expert judgment has on predictive uncertainty at the WIPP site is discussed. It is shown that for this case, expert interaction leads to more conservative solutions as the expert compensates for some of the lack of data and modeling approximations introduced in the formulation of the problem.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号