首页 | 本学科首页   官方微博 | 高级检索  
     

自组织竞争神经网络在江苏油田有杆抽油系统故障诊断中的应用
引用本文:徐芃,徐士进,尹宏伟,周会群. 自组织竞争神经网络在江苏油田有杆抽油系统故障诊断中的应用[J]. 高校地质学报, 2006, 12(2): 266-270
作者姓名:徐芃  徐士进  尹宏伟  周会群
作者单位:南京大学,地球科学系,南京,210093;南京大学,地球科学系,南京,210093;南京大学,地球科学系,南京,210093;南京大学,地球科学系,南京,210093
摘    要:有杆抽油系统的故障诊断技术是国内外采油工程技术中的一个重要研究课题。通过示功图的不同形状特征可以反映抽油机的不同工作状态。将自组织竞争神经网络应用于示功图的识别与分类,建立了一个自组织竞争神经网络模型对示功图进行自动聚类,从而实现故障诊断的自动化。应用江苏油田的实测示功图数据进行实验,可以看出自组织竞争神经网络具有良好的分类能力和泛化性能,是实现油田抽油系统故障诊断的有效技术,具有很强的实用价值和广泛的应用前景。

关 键 词:故障诊断  模式识别  自组织竞争神经网络  有杆抽油系统  示功图
文章编号:1006-7493(2006)02-0266-05
收稿时间:2005-09-07
修稿时间:2006-02-28

Application of Self-Organizing Competitive Neural Network to Fault Diagnosis of Sucker Rod Pumping System in Jiangsu Oilfield
XU Peng,XU Shi-jin,YIN Hong-wei,ZHOU Hui-qun. Application of Self-Organizing Competitive Neural Network to Fault Diagnosis of Sucker Rod Pumping System in Jiangsu Oilfield[J]. Geological Journal of China Universities, 2006, 12(2): 266-270
Authors:XU Peng  XU Shi-jin  YIN Hong-wei  ZHOU Hui-qun
Abstract:Fault diagnosis of suck rod pumping system is an important research subject of oil extraction engineering. By using the computer-aided diagnosis system, we are able to learn the precise real-time information about the status of the sucker rod pumping system, which is important to the realization of long distance remote control of oil extraction and the improvement of economic interest of petroleum industry. In practice, the down-hole conditions are mostly observed by dynamometer cards. Down-hole conditions of suck rod pumping system are reflected by different shapes of dynamometer cards. Fault diagnosis of sucker rod pumping system is actually a pattern recognition and classification technique. Self-organizing competitive neural network is used in this paper to classify dynamometer cards in fault diagnosis of sucker rod pumping system. A self-organizing competitive neural network model is constructed to achieve automatization of fault diagnosis by automatic clustering of dynamometer cards. The model was applied to data measured from Jiangsu oilfield. Results from experiments show that the model has good classification capability and generalization capability. In conclusion, self-organizing competitive neural network is an effective method to automatically diagnose fault of sucker rod pumping system. It has great practical value and good application future.
Keywords:fault diagnosis  pattern recognition  self-organizing competitive neural network  sucker rod pumping system  dynamometer card
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《高校地质学报》浏览原始摘要信息
点击此处可从《高校地质学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号