首页 | 本学科首页   官方微博 | 高级检索  
     


Convex optimization under inequality constraints in rank-deficient systems
Authors:Lutz Roese-Koerner  Wolf-Dieter Schuh
Affiliation:1. Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany
Abstract:Many geodetic applications require the minimization of a convex objective function subject to some linear equality and/or inequality constraints. If a system is singular (e.g., a geodetic network without a defined datum) this results in a manifold of solutions. Most state-of-the-art algorithms for inequality constrained optimization (e.g., the Active-Set-Method or primal-dual Interior-Point-Methods) are either not able to deal with a rank-deficient objective function or yield only one of an infinite number of particular solutions. In this contribution, we develop a framework for the rigorous computation of a general solution of a rank-deficient problem with inequality constraints. We aim for the computation of a unique particular solution which fulfills predefined optimality criteria as well as for an adequate representation of the homogeneous solution including the constraints. Our theoretical findings are applied in a case study to determine optimal repetition numbers for a geodetic network to demonstrate the potential of the proposed framework.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号