首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Changes in climatic variability and maize yield inNortheast China
Authors:WU Jin-dong  WANG Fu-tang
Abstract:The method linking general circulation models' (GCMs') outputs with crop growthsimulation models' inputs has been the first choice in the studies of impacts of climate change.Changes in climatic variability, however were not considered in most studies due to limitedknowledge concerned Changes in climatic means derived from a general circulation model DKRZOPYC were input into a stochastic weather generator WGEN run for synthetic daily climate scenarios.Monte Carlo stochastic sampling method was adopted to generate climate change scenarios withvarious possible climatic veriabilities. A dynamic simulation model for maize growth anddevelopment of MZMOD was used to assess the potenhal implication of the changes in both climaticmeans and variability nd the boacts of crop management in changing climate on maize productionin Northeast China. The results indicated that maize yield would be reduced to various degrees inmost of the sensitivity experiments of climatic variability associating with the shortening of theduration of phenological phase of different sowing dates. The Anpacts of the diverse distributions ofclimatic factors detetmined by multiple changes in climatic variability on maire production and itsvariation, however, are not identical and have distinct regional disparities. Yield reduction caused bychanges in climatic means may be alleviated or aggravated by didributions of certain climaticvariables in line with the corresponding climatic variability according to the sensitivity analyses.Consequently, the hypothesis keeping climatic variability constant in the traditional research imposesrestriction on the overall inveshgation of the impacts of climate change on maize production.
Keywords:climatic variability  stochastic weather generator GCMs  crop model
本文献已被 CNKI 等数据库收录!
点击此处可从《地理学报(英文版)》浏览原始摘要信息
点击此处可从《地理学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号