首页 | 本学科首页   官方微博 | 高级检索  
     


Second-order wavemaker theory for irregular waves
Authors:Hemming A. Schä  ffer
Affiliation:Hemming A. Schäffer
Abstract:Through the last decade the theory for second-order irregular wave generation was developed within the framework of Stokes wave theory. This pioneering work, however, is not fully consistent. Furthermore, due to the extensive algebra involved, the derived transfer functions appear in an unnecessarily complicated form. The present paper develops the full second-order wavemaker theory (including superharmonics as well as subharmonics) valid for rotational as well as translatory wave board motion. The primary goal is to obtain the second-order motion of the wave paddle required in order to get a spatially homogeneous wave field correct to second order, i.e. in order to suppress spurious free-wave generation. In addition to the transfer functions developed in the line of references on which the present work is based, some new terms evolve. These are related to the first-order evanescent modes and accordingly they are significant when the wave board motion makes a poor fit to the velocity profile of the desired progressive wave component. This is, for example, the case for the high-frequency part of a primary wave spectrum when using a piston-type wavemaker. The transfer functions are given in a relatively simple form by which the computational effort is reduced substantially. This enhances the practical computation of second-order wavemaker control signals for irregular waves, and no narrow band assumption is needed. The software is conveniently included in a PC-based wave generation system—the DHI Wave Synthesizer. The validity of the theory is demonstrated for a piston type wavemaker in a number of laboratory wave experiments for regular waves, wave groups and irregular waves.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号