首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Environmental isotope study of seawater intrusion in the coastal aquifer (Syria)
Authors:Boulos Abou Zakhem  Rania Hafez
Institution:(1) Department of Geology, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
Abstract:Seawater intrusion into the shallow aquifer in the Syrian coast, north of Latakia (Damsarkho, Ras Ibn Hani) and south of Tartous (Al Hamidieh, Ein Zarka) was studied using hydrochemical and isotopic techniques. The electrical conductivity (EC) distribution map north of Latakia revealed that mixing in this area is the consequence of a frontal intrusion of seawater within the fresh groundwater aquifer which, in turn, results from intensive pumping since the 1960s which has lowered the water table inland below sea level. In Ein Zarka, south of Tartous, in contrast, the EC distribution revealed that seawater intrusion is due to local up-coning as a result of intensive pumping. The deuterium and oxygen-18 relationship is that of a mixing line with a slope of 5.55, indicating an intrusion between freshwater and seawater. In addition, the relationship between oxygen-18 and chloride reveals that the mixing has a dominant role compared to evaporation process. The mixing ratios are estimated to be between 6 and 10% north of Latakia, while they do not exceed 3% south of Tartous. A tritium model was applied to compute the “mean transit time”, which is estimated to be around 10 years, on average, to reach the equilibrium that existed originally between the fresh groundwater and seawater, provided that severe pumping is completely halted and the aquifer is naturally recharged by rainfall and deep percolation of irrigation water, thereby allowing the restoration of the hydraulic gradient. This paper is dedicated to the memory of Dr. Y. Yurtsever.
Keywords:Environmental isotope  Mediterranean  Mixing ratio  Seawater intrusion  Syria  Transit time
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号