首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A lunar crustal gravity model across the Triesnecker-Hyginus area,Mare Tranquillitatis,and Mare Fecunditatis
Authors:Peter Janle
Institution:(1) Institut für Geophysik der Universität, Kiel, FRG
Abstract:LOS Bouguer gravity anomalies have been calculated from a low altitude LOS free air Doppler gravity profile across northern Mare Fecunditatis, southern Mare Tranquillitatis and the Aridaeus Rille. The Hyginus-Triesnecker area has been included in model calculations, though here only free air anomalies are present. A crustal density model has been fitted to the Bouguer anomalies and to the free air anomalies in the case of the Hyginus-Triesnecker area.On a regional scale northern Fecunditatis has Bouguer anomalies up to 80 mgal and lithostatic stresses of 29 bar and thus is nearly in isostatic equilibrium. Tranquillitatis can be divided into three regions of different crustal structure: (1) northern Tranquillitatis with only minor free air gravity anomalies is more or less in isostatic balance, (2) the southeastern region with Bouguer anomalies to –100 mgal and lithostatic stresses of –73 bar has a considerable mass deficit, (3) the southwestern basin is dominated by the local structure Lamont with a Bouguer maximum of 200 mgal and extremely high lithostatic stresses of 285 bar.The Bouguer minimum of –180 mgal of the Aridaeus area has been modelled by two alternative models: (i) a crustal thickening of 33 km and associated lithostatic stresses of –164 bar, and (ii) a crustal thickening of 20 km plus a low density intrusion. The free air maximum of the Hyginus-Triesnecker area has been fitted by a mantle plug connected with stresses of 116 bar.As the old irregular maria could not sustain large mascon stresses, it has been concluded that the local high stresses of Lamont, Aridaeus, and Hyginus-Triesnecker have been evolved after the impacts of the circular maria. Intrusional activities in these areas could have proceeded to fault zones generated by the large impacts.Contribution No. 211, Institut für Geophysik der Universität Kiel, F.R.G.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号