首页 | 本学科首页   官方微博 | 高级检索  
     


Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadan Precambrian Shield lake
Authors:Saloni Clerk  Roland Hall  Roberto Quinlan  John P. Smol
Affiliation:(1) Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of Biology, Queen's University, Kingston, Ontario, Canada, K7L 3N6;(2) Abisko Scientific Research Station, Climate Impacts Research Centre (CIRC) and Umeå University, Box 62, S-981 07 Abisko, Sweden;(3) Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of Biology, Queen's University, Kingston, Ontario, Canada, K7L 3N6
Abstract:Paleolimnological analyses were used to infer limnological changes during the past ~ 300 yrs in the west basin of Peninsula Lake, a small (853 ha) Precambrian Shield lake in Ontario, Canada, that has been subjected to moderate cultural disturbances (forest clearance, cottage and resort development). This study represents a pioneering attempt to use sedimentary chironomid assemblages and weighted-averaging models to quantify past hypolimnetic anoxia (expressed as the anoxic factor, AF). Impacts of forest clearance and human land-use on deepwater oxygen availability and surface water quality were assessed by comparing chironomid-inferred AF and diatom-inferred total phosphorus concentration ([TP]) to changes in terrestrial pollen and historical data. This study also discusses the ability of chironomids to quantitatively infer changes in AF.Pre-disturbance chironomid assemblages were stable and dominated by taxa indicative of oxygen-rich hypolimnetic conditions (e.g., Protanypus, Heterotrissocladius, Micropsectra type), while diatoms indicated oligotrophic lake status (diatom inferred [TP] = 5-7 mgrg·l-1). Chironomids characteristic of lower oxygen availability (e.g., Chironomus, Procladius) increased following land-clearance, road construction, establishment of a grist mill and lakeshore development beginning ca. 1870. Increased abundances of Tanytarsus s. lat., a multigeneric group of mainly littoral chironomids, since 1900, indicated that littoral chironomids may have comprised a greater proportion of fossil assemblages during periods of eutrophication and prolonged anoxia. Abundances of meso-eutrophic diatom taxa (e.g., Fragilaria crotonensis, Asterionella formosa, Aulacoseira ambigua, A. subarctica) increased concurrent with European settlement (ca. 1870) and diatom-inferred [TP] doubled (~ 6-12 mgrg·l-1), further indicating that naturally-oligotrophic Precambrian Shield lakes were extremely sensitive to initial land-clearance activities.Recent increases in oligotrophic diatom taxa (e.g., Cyclotella stelligera) indicate a shift to more oligotrophic conditions since ca. mid-1960s, with greatest changes since ca. 1980. The chironomids Heterotrissocladius and Micropsectra type also increased at this time suggesting greater deepwater oxygen availability. These recent water-quality improvements, possibly in response to enhanced nutrient removal from detergents and sewage, climate-related reductions in external phosphorus loads, and catchment (but not lake) acidification and reforestation, suggest that habitat for commercially-valuable cold-water fishes has improved in recent decades despite greater recreational lake-use.Paleolimnological assessment of trophic status changes in Peninsula Lake using fossil diatom and chironomid assemblages were in good agreement. Diatom inferences of [TP] and chironomid inferences of AF both suggest that Peninsula Lake was historically oligotrophic, became oligo-mesotrophic after European settlement, and returned to oligotrophy in recent yrs. Chironomid inferences of [TP] consistently underestimated the trophic status of Peninsula Lake, possibly due to its relatively large hypolimnion. These results suggest that AF represents a useful tool for quantitatively reconstructing the past trophic status of deeper, stratified lakes.
Keywords:eutrophication  chironomids  diatoms  anoxia  oxygen levels  nutrients  Ontario
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号