首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A novel geostatistical approach combining Euclidean and gradual-flow covariance models to estimate fecal coliform along the Haw and Deep rivers in North Carolina
Authors:Prahlad?Jat  Email authorEmail author
Institution:1.Department of Environmental Sciences and Engineering, Gillings School of Global Public Health,University of North Carolina,Chapel Hill,USA
Abstract:Incorporating flow in the covariance function is important for geostatistical water quality estimation that accounts for hydrological transport. Very few studies have successfully incorporated flow due to various reasons including implementation difficulties. To address this critical issue, we introduce here the first implementation of a flow weighted covariance model that uses gradual flow, and we use this model in a novel hybrid Euclidean/Gradual-flow covariance model to estimate fecal coliform along the Haw and Deep rivers from 2006 to 2010. The hybrid Euclidean/Gradual-flow model results in a 12.4% reduction in estimation mean square error compared to the Euclidean model, indicating that this is the first study to successfully incorporate gradual flow and demonstrate an improvement in estimation accuracy over the purely Euclidean approach. Furthermore, results show that the Euclidean/Gradual-flow model is more accurate and easier to implement than the Euclidean/Pipe-flow model. Our assessment found that 96 river miles were detected as being impaired according to the Euclidean/Gradual-flow method, which is more than twice the 39 river miles found according to the Euclidean estimate. These results demonstrate that the Euclidean/Gradual-flow model substantially increase the sensitivity in detecting fecal impairment, which provide critical new information for watershed management and public health protection measures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号