Affiliation: | 1.Department of Agricultural and Biological Engineering,Purdue University,West Lafayette,USA;2.National Center for Water Quality Research,Heidelberg University,Tiffin,USA;3.Department of Statistics,Purdue University,West Lafayette,USA;4.USDA Agricultural Research Service, National Soil Erosion Research Laboratory,West Lafayette,USA |
Abstract: | Stochastic weather generators are widely used in hydrological, environmental, and agricultural applications to simulate weather time series. However, such stochastic models produce random outputs hence the question on how representative the generated data are if obtained from only one simulation run (realization) as is common practice. In this study, the impact of different numbers of realizations (1, 25, 50, and 100) on the suitability of generated weather data was investigated. Specifically, 50 years of daily precipitation, and maximum and minimum temperatures were generated for three weather stations in the Western Lake Erie Basin (WLEB), using three widely used weather generators, CLIGEN, LARSWG and WeaGETS. Generated results were compared with 50 years of observed data. For all three generators, the analyses showed that one realization of data for 50 years of daily precipitation, and maximum and minimum temperatures may not be representative enough to capture essential statistical characteristics of the climate. Results from the three generators captured the essential statistical characteristics of the climate when the number of realizations was increased from 1 to 25, 50 or 100. Performance did not improve substantially when realizations were increased above 25. Results suggest the need for more than a single realization when generating weather data and subsequently utilizing in other models, to obtain suitable representations of climate. |