首页 | 本学科首页   官方微博 | 高级检索  
     

高分辨率遥感影像分类的多示例集成学习
引用本文:杜培军,阿里木·赛买提. 高分辨率遥感影像分类的多示例集成学习[J]. 遥感学报, 2013, 17(1): 77-97
作者姓名:杜培军  阿里木·赛买提
作者单位:南京大学 地理信息科学系,江苏 南京,210093;南京大学 地理信息科学系,江苏 南京,210093
基金项目:国家自然科学基金(编号:41171323);地理空间信息工程国家测绘地理信息局重点实验室经费资助项目(编号:201109);江苏省自然科学基金(编号:BK2012018)
摘    要:精选示例特征嵌入多示例学习(MILES)算法在对噪声较强的训练样本进行学习时表现出良好的性能,但其判断规则可能带来遥感影像分类结果的不确定性。针对这一问题,提出用Bagging和AdaBoost集成MILES的多示例集成学习算法,使用粗包细分、多样性密度和最大似然分类相结合抑制分类不确定性的方法,实现了高分辨率遥感影像分类中多示例学习与集成学习的组合。采用Quick Bird、IKONOS等高分辨率遥感影像进行试验,结果表明多示例集成学习能有效控制遥感影像分类结果的不确定性,具有良好的应用前景。

关 键 词:多示例学习  精选示例特征嵌入多示例学习  集成学习  分类器  不确定性
收稿时间:2012-01-05
修稿时间:2012-06-25

Multiple instance ensemble learning method for high-resolution remote sensing image classification
DU Peijun and SAMAT Alim. Multiple instance ensemble learning method for high-resolution remote sensing image classification[J]. Journal of Remote Sensing, 2013, 17(1): 77-97
Authors:DU Peijun and SAMAT Alim
Affiliation:Department of Geographical Information Science, Nanjing University, Nanjing 210093, China;Department of Geographical Information Science, Nanjing University, Nanjing 210093, China
Abstract:Multiple Instance Learning Via Embedded Instance Selection (MILES) has shown good performance in dealing with noisy training samples, but its bag prediction rule may introduce new uncertainty into the remote sensing image classification results. In order to overcome this limitation, two popular ensemble learning strategies, Bagging and AdaBoost are integrated with MILES. Two methods are proposed to constrain the uncertainty in remote sensing image classification: re-classification of coarse bags, and integration of MILES with diverse density and maximum likelihood classifier. The experimental results show that the uncertainty of remote sensing image classification can be obviously reduced by the integration of multiple instance learning with ensemble learning.
Keywords:multiple instance learning  multiple instance learning via embedded instance selection (miles)  ensemble learning  classifier  uncertainty
本文献已被 CNKI 等数据库收录!
点击此处可从《遥感学报》浏览原始摘要信息
点击此处可从《遥感学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号