首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chironomid-based water depth reconstructions: an independent evaluation of site-specific and local inference models
Authors:Stefan Engels  Les C Cwynar  Andrew B H Rees  Bryan N Shuman
Institution:1. Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
2. Department of Climate Change and Landscape Dynamics, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
3. Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, The Netherlands
4. Department of Geology and Geophysics, University of Wyoming, Laramie, WY, 82071, USA
Abstract:Water depth is an important environmental variable that explains a significant portion of the variation in the chironomid fauna of shallow lakes. We developed site-specific and local chironomid water-depth inference models using 26 and 104 surface-sediment samples, respectively, from seven kettlehole lakes in the Plymouth Aquifer, southeast Massachusetts, USA. Our site-specific model spans a depth gradient of 5.6?m, has an $ {\text{r}}_{\text{jack}}^{2} $ of 0.90, root mean square error of prediction (RMSEP) of 0.5?m and maximum bias of 0.7?m. Our local model has a depth gradient of 11.7?m, an $ {\text{r}}_{\text{jack}}^{2} $ of 0.71, RMSEP of 1.6?m and maximum bias of 2.9?m. Principal coordinates of neighbourhood matrices (PCNM) analysis showed that there is no influence of spatial autocorrelation on the site-specific model, but PCNM variables explained a significant amount of variance (4.8%) in the local model. This variance, however, is unique from the variance explained by water depth. We applied the inference models to a Holocene chironomid record from Crooked Pond, a site for which multiple, independent palaeohydrological reconstructions are available. The chironomid-based reconstructions are remarkably similar and show stable water depths of ~5?m, interrupted by a 2-m decrease between 4,200 and 3,200?cal a BP. Sedimentological evidence of water level fluctuations at Crooked Pond, obtained using the so-called Digerfeldt approach, also shows a drop in water depths around that time. The period of reconstructed lower water levels coincides with the abrupt decline in moisture-dependent hemlock in this region, providing further evidence for this major palaeohydrological event. The site-specific model has the best performance statistics, but the high percent abundance of fossil taxa from the long core that are absent or rare in the training set makes the site-specific reconstruction unreliable for the period before 4,400?cal a BP. The fossil taxa are well represented in the local model, making it the preferred inference model. The strong similarity between the chironomid-based reconstructions and the independent palaeohydrological records highlights the potential for using chironomid-based inference models to determine past lake depths at sites where temperature was not an influencing factor.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号