首页 | 本学科首页   官方微博 | 高级检索  
     


Astronomical calibration of the Matuyama-Brunhes boundary: Consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences
Authors:L. Tauxe   T. Herbert   N.J. Shackleton  Y.S. Kok
Affiliation:

aFort Hoofddijk Paleomagnetic Laboratory, Budapestlaan 17, 3584 CD Utrecht, The Netherlands

bScripps Institution of Oceanography La Jolla, CA 92093-0220, USA

cGodwin Institute for Quaternary Research, The Godwin Laboratory, Free School Lane, Cambridge, UK

Abstract:We have compiled 19 records from marine carbonate cores in which the Matuyama-Brunhes boundary (MBB) has been reasonably well constrained within the astronomically forced stratigraphic framework using oxygen isotopes. By correlation of the δ18O data to a timescale based on astronomical forcing, we estimate astronomical ages for each of the MBB horizons. In all but one record the MBB occurs within Stage 19.

Most magnetostratigraphic sections in Asian Loess place the MBB within a loess interval. Since loess deposition is presumed to be associated with glacial intervals, loess horizons should correspond to even-numbered oxygen isotope stages. A glacial age for the MBB is at odds with the results presented here, which firmly place the MBB within interglacial Stage 19. Inconsistency among the many loess sections and between the loess and the marine records suggests that the magnetic interpretation of loess sections may be more complicated than hitherto supposed.

The mean of the Stage 19 age estimates for the MBB is 777.9 ± 1.8 (N = 18). Inclusion of the single Stage 20 age results in a mean of 778.8 ± 2.5 (N = 19). The astronomical age estimate of the MBB compares favorably with an (unweighted) mean of 778.2 ± 3.5 (N = 10) from a compilation of 40Ar/39Ar results of transitional lava flows. Combining the two independent data sets yields a grand mean of 778.0 ± 1.7 (N = 28).

The new compilation shows virtually no trend in placement of the MBB within isotope Stage 19 as a function of sediment accumulation rate. We interpret this to mean that the average depth of remanence acquisition is within a few centimeters of the sediment-water interface.

Separating the cores into two geographic regions (an Indo-Pacific-Caribbean [IPC] Group and an Atlantic Group) results in a significant difference in the position of the mid-point of the reversal with respect to the astronomical time scale. The data presented here suggest a difference of several thousand years between the two regions. This observation could be caused by systematic differences between the two regions in sedimentation rate within the interval of interest, systematic differences in remanence acquisition, or by genuine differences in the timing of the directional changes between the two regions.

Keywords:Matuyama Epoch   Brunhes Epoch   paleomagnetism   time scales   magnetostratigraphy   remanence magnetization   loess
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号