Abstract: | Biomarker distributions based on GC and GC-MS data supplemented by stable carbon isotopic compositions based on irm (isotope ratio monitoring) GC-MS data have been used to investigate changes in depositional conditions in a number of samples from a 2 m core (Rheinberger Heide) covering the entire deposition of the Permian Kupferschiefer (Lower Rhine Basin, northwest Germany). Compound classes investigated are aliphatic and aromatic hydrocarbons and maleimides (1H-pyrrole-2,5-diones). The core has been previously divided into four sections: TI, TIIA, TIIB and TIII based on lithology. The biomarker distributions and the δ13C values of components indicate contributions from cyanobacteria, algae, green sulphur bacteria and higher plants (minor) throughout Kupferschiefer deposition. All of the phytoplanktonic components show 13C enrichment in the lowest section, suggesting a greater productivity. The occurrence of components derived from green sulphur bacteria (Chlorobiaceae) indicates that the entire deposition was characterised by periods of photic zone anoxia. Such conditions were rapidly established after the initial transgression of the Zechstein Sea and may have been productivity-driven, but were less prevalent during deposition of the upper core sections. |