首页 | 本学科首页   官方微博 | 高级检索  
     

热带山区高时空分辨率NDVI融合精度及其影响因素分析
引用本文:高书鹏,刘晓龙,宋金玲,史正涛,杨磊,郭利彪. 热带山区高时空分辨率NDVI融合精度及其影响因素分析[J]. 地球信息科学学报, 2022, 24(2): 405-419. DOI: 10.12082/dqxxkx.2022.210281
作者姓名:高书鹏  刘晓龙  宋金玲  史正涛  杨磊  郭利彪
作者单位:1.云南师范大学地理学部,昆明 6505002.内蒙古工业大学信息工程学院,呼和浩特 0100513.北京师范大学地理科学学部,北京 100875
基金项目:云南省水利厅水利科技项目;国家重点研发计划;国家自然科学基金;云南师范大学博士研究生学术新人奖资助项目
摘    要:高时空分辨率NDVI时序数据作为遥感应用中的重要数据源,对土地覆被动态变化监测具有重要意义,特别是在地表高程变化显著、气候条件复杂、景观异质性强烈的热带山区。虽然当前学者们提出了诸多时空数据融合模型,但针对这些模型在热带山区的NDVI数据融合精度及其影响因素分析尚不多见。对此,本文选取3类时空数据融合方法(权重函数法、概率统计法和多种混合法)中具有代表性的4个模型:STARFM(Spatial and Temporal Adaptive Reflectance Fusion Model)、RASTFM(Spatial and Temporal Adaptive Reflectance Fusion Model)、ESTARFM(Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model)、BSFM(Bayesian Spatiotemporal Fusion Model)(STARFM、ESTARFM为权重函数法;BSFM为概率统计法;RASTFM为多种混合法),选择位于我国热带山区的纳板河流域作为研究区。对融合模型的...

关 键 词:数据融合  NDVI  时空数据融合模型  高时空分辨率  热带山区  空间异质性  地形  雾霾
收稿时间:2021-05-20

Study on the Factors that Influencing High Spatio-temporal Resolution NDVI Fusion Accuracy in Tropical Mountainous Area
GAO Shupeng,LIU Xiaolong,SONG Jinling,SHI Zhengtao,YANG Lei,GUO Libiao. Study on the Factors that Influencing High Spatio-temporal Resolution NDVI Fusion Accuracy in Tropical Mountainous Area[J]. Geo-information Science, 2022, 24(2): 405-419. DOI: 10.12082/dqxxkx.2022.210281
Authors:GAO Shupeng  LIU Xiaolong  SONG Jinling  SHI Zhengtao  YANG Lei  GUO Libiao
Affiliation:1. Faculty of geography, Yunnan Normal University, Kunming 650500, China2. School of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051, China3. Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Abstract:As an important data source in remote sensing application, high spatiotemporal resolution NDVI time series data is of great significance for dynamic change monitoring of land cover, especially in tropical mountainous areas, where the surface elevation changes significantly, climate conditions are complex and spatiotemporally heterogeneous. Many multi-spatiotemporal data fusion models have been proposed by scholars. However, it is rare to analyze the fusion accuracy of these models and their influencing factors in tropical mountainous areas. This study takes the Naban River Watershed in the tropical mountainous area of Southwest China as the study area. Four representative models have been selected from three types of spatiotemporal data fusion methods, namely weight function-based method, Bayesian-based method, and Hybrid method. The four models are Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), Spatial and Temporal Adaptive Reflectance Fusion Model (RASTFM), and Bayesian Spatiotemporal Fusion Model (BSFM). Among them, STARFM and ESTARFM are weight function-based method, BSFM is Bayesian-based method, and RASTFM is Hybrid method. This study carries out analysis of data source selection, terrain of the study area, landscape spatial heterogeneity, pixel numerical accuracy of fusion model, and atmospheric conditions such as thin clouds and haze. The results show that, firstly, the fusion accuracy decreases with the increase of time interval and its relative variation. A better match in sensor spectrum between the two input data results in a higher fusion accuracy. OLI is better than Sentinel-2 while MODIS is better than VIIRS. Compared with unadjusted data, data adjusted by the Bidirectional Reflectance Distribution Function (BRDF) can effectively improve fusion accuracy.Secondly, fusion accuracy is negatively correlated with spatial heterogeneity. Fusion accuracy decreases when spatial heterogeneity increases. There is a strong negative correlation between fusion accuracy and spatial heterogeneity at elevations. Fusion accuracy decreases when slope increases. In comparison, slope aspect has little influence on fusion accuracy. The influence of terrain on RASTFM is smaller when compared with models. Thirdly, the more high-quality high-resolution raw data as input data for the model, the higher the fusion accuracy will be. Fourthly, thin clouds and haze have a significant negative impact on the fusion accuracy. The results have important values as references for improving the high spatial-temporal data fusion model in tropical mountainous areas and establishing high spatiotemporal resolution NDVI data sets in complex geographical environment.
Keywords:data fusion  NDVI  spatio-temporal data fusion model  high spatio-temporal resolution  tropical mountainous area  spatial heterogeneity  topography  haze  
本文献已被 万方数据 等数据库收录!
点击此处可从《地球信息科学学报》浏览原始摘要信息
点击此处可从《地球信息科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号