Rekonstruktion der Abkühlungsgeschichte des Damara-Orogens in Südwest-Afrika mit Hilfe von Spaltspuren-Altern |
| |
Authors: | Dr. Udo Haack |
| |
Affiliation: | (1) Present address: Geochemisches Institut der Universität, Goldschmidtstr. 1, D-3400 Göttingen |
| |
Abstract: | Zusammenfassung Mit Hilfe der Spuren der spontanen Kernspaltung des Urans wurden 23 andraditreiche Granate, 10 Epidote, 4 Vesuviane und 61 Apatite datiert. Die Kombination dieser Daten mit denen klassischer radiometrischer Verfahren erlaubte es, die Abkühlungsgeschichte des jungpräkambrischen Damara-Orogens in Südwestafrika recht detailliert nachzuzeichnen. Dadurch, daß die effektiven Schließungstemperaturen der benutzten Minerale für Spaltspuren wesentlich unter derjenigen für Ar in Biotit liegen, konnte erstmals der Tieftemperaturbereich genauer erfaßt werden. Während im genannten Untersuchungsgebiet von ca. 80 000 km2 die K/Ar-Biotit-Alter (Schließungstemperatur 300° C) recht einheitlich nahe 485 m. a. liegen, trifft dies auf die Spaltspurenalter überhaupt nicht zu. Bezüglich Granat (Schließungstemperatur 260 bis 280° C) kann man vielmehr einen Bereich niedriger Alter mit 300–350 m. a. von einem Bereich hoher Alter mit 490 m. a. (Konkordanz mit Biotit) unterscheiden. Ganz analog verteilen sich die Apatitalter (Schließungstemperatur 70–80° C): sie betragen 80–120 m. a. und 200–300 m. a. Die Bereiche hoher und niedriger Alter grenzen mit äußerst schmalen Übergangszonen von zum Teil weniger als 10 km Breite aneinander. Die niedrigen Alter finden sich dort, wo während der Metamorphose mit > 660° C die höchsten Temperaturen erreicht wurden. Es handelt sich um eine Art 300 km breites Plateau bei dem relativ niedrigen Druck von 3 kb. Der Sprung von niedrigen zu hohen Altern vollzieht sich dort, wo dieses Plateau zu Ende ist, wo also während der Metamorphose die Isothermen steil abtauchten und im heutigen Oberflächenausschnitt die Drucke wesentlich höher, die erreichten Temperaturen aber viel niedriger waren. Diese Übereinstimmung von Zonen hoher Temperatur mit niedrigen Spaltspurenaltern und umgekehrt wird noch dadurch akzentuiert, daß die absolut niedrigsten Alter (auch K/Ar) dort auftreten, wo auch beginnende Anatexis zu beobachten ist.Aus all diesen Befunden und den P-T-Daten wird gefolgert, daß das Gebirge zunächst durch relativ rasche Hebung und Abtragung auf einheitlich ca. 300° C abkühlte. Als dann diese Abtragung nahezu zum Stillstand kam, betrug die Abkühlungsgeschwindigkeit im Bereich der niedrigen Spaltspurenalter, der sich mit dem der höchsten Temperauren während der Metamorphose deckt, nur noch 2°/10 m. a. Dort nahmen die geothermischen Gradienten von ca. 60°/km auf 30–40°/km ab, außerhalb dieser Zone auf 15–20°/km. Die ursprüngliche Wärmequelle muß also noch aktiv gewesen sein, oder ein anderer Mechanismus zur Aufrechterhaltung der Gradienten muß diese Wärmequelle abgelöst haben. Denkbar ist, daß die riesigen Volumina intrusiver Granite und Pegmatite in diesem Gebiet eine Konzentrierung der radioaktiven Elemente bewirkten; diese könnten dann zu der beobachteten postorogenen Wärmeverteilung geführt haben, die der ursprünglichen sehr ähnelt.
The fission track ages of 23 andradite rich garnets, 10 epidotes, 4 vesuvianites and 61 apatites were determined. The combination of these data with those from classical radiometric techniques permitted to reconstruct in great detail the cooling history of the young-Precambrian Damara-Orogen in South West Africa. By this method the low temperature region below 300° C (closing temperature for Ar in biotite) became accessible because the minerals used begin to retain tracks only at considerably lower temperatures.Whereas the K/Ar ages of biotite lie rather uniformly close to 485 m. y. in the whole area studied (approximately 80 000 km2) the contrary is true for the fission track ages: Low garnet ages (closing temperature -, 260–280° C) of 300–350 m. y. in one zone and high ages of 490 m. y. and concordance with K/Ar biotite ages in the other. The distribution of the apatite ages (closing temperature 70–80° C) is analogous: Low ages of 80–120 m. y. where garnet is young and ages of 200–300 m. y. where garnet is old. The two areas are separated from each other by a narrow transition zone which sometimes is less than 10 km wide. The low ages are found where the highest temperatures of > 660° C at 3 kb were reached during the peak of metamorphism. The high temperature plateau was about 300 km wide. The jump from low to high fission track ages occurs at the margin of the plateau, where the isotherms become steep during metamorphism and where — at the now exposed surface — the pressures were higher but the temperatures lower. This congruence of the high temperature zone with the region of low fission track ages is further accentuated by the observation that the absolutely lowest ages (track and K/Ar) are found only where incipient anatexis occurred.From the observations and from the P-T data it is concluded that the orogen in the beginning underwent relatively rapid uplift and erosion and had cooled down to uniformly 300° C about 485 m. y. ago. Erosion then ceased more or less for about 200 m. y. and further cooling proceeded very slowly by only 2°/10 m. y. in the area where the highest temperatures were reached during metamorphism and where the low ages are found. There the geothermal gradient of 60°/km which prevailed already during the peak of metamorphism decreased to 30–40°/km, outside this zone to 15–20°/km. Either the original heat source was still active then or another mechanism must be found which can maintain this gradient for such a long time. It is possible that the enormous volumes of granites and pegmatites which are confined to the area in question concentrated the radioactive elements in the upper crust. This could have caused a postorogenic heat distribution very similar to the original heat source.
Résumé A l'aide des traces de fission spontanée de l'uranium on a pu déterminer l'âge de 23 grenats riches en andradite, 10 epidotes, 4 vésuvianites et 61 apatites. La combinaison de ces âges avec ceux des méthodes classiques de la radiométrie a permis de tracer d'une façon assez détaillée l'histoire du refroidissement de l'orogène du Damara du Précambrien supérieur de l'Afrique Sud-Ouest. Comme les températures effectives de fermeture des minéraux utilisés restent considérablement inférieures à celles concernant l'Ar dans la biotite, on pouvait pour la première fois saisir plus exactement la région des températures basses. Tandis que dans le territoire étudié d'environ 80.000 km2 les âges K/Ar-biotite (température de fermeture 300° C) sont proches assez uniformement de 485 m. a., on constate que cela ne vaut plus du tout pour les âges des traces de fission. En ce qui concerne le grenat (température de fermeture 260–280° C), on peut distinguer une région à âges de 300–350 m. a. d'une autre région à âges plus élevés avec 490 m. a. (concordance avec biotite). Les âges de l'apatite (température de fermeture 70–80 °C) se répartissent de façon analogue: ils s'élèvent à 80–120 et 200–300 m. a. La zone de transition entre les deux régions est très étroite (parfois moins de 10 km de largeur). Les âges de faible valeur se trouvent là où, pendant le métamorphisme, les plus hautes températures > 660° C furent atteintes. Il s'agit d'une sorte de plateau de 300 km de largeur avec une pression relativement faible de 3 kb. Le saut des valeurs d'âge faibles aux valeurs fortes s'effectue là où ce plateau se termine, s'est-à-dire où, pendant le métamorphisme, les isothermes tombaient abruptement et où, dans la section actuellement exposée en surface, tes pressions étaient considérablement plus élevées, mais les températures atteintes beaucoup plus basses. Cette coïncidence de zones de haute température avec les âges faibles des traces de fission et inversement est encore accentuée par le fait que les âges absolus les plus faibles (aussi K/Ar) se trouvent exclusivement là où l'anatexis commençait.De tous ces rapports et des données P-T on peut conclure que le massif s'est refroidi d'abord uniformément jusqu'à 300° C environ à la suite d'un soulèvement et d'une érosion relativement rapides. Lorsque cette érosion fut à peu près arrêté, la vitesse de refroidissement dans la région des âges faibles des traces de fission, qui coïncide avec celle des plus hautes températures pendant le métamorphisme, s'élevait seulement à 2°/10 m. a. Là, les gradients géothermiques d'environ 60°/km ont diminué à 30–40°/km et dans la zone des âges élevés à 15–20°/km. Il faut donc que la source de chaleur originelle ait encore été active, ou qu'un autre mécanisme pour le maintien des gradients ait remplacé cette source de chaleur. On peut s'imaginer que les énormes volumes de granites et pegmatites dans cette région ont effectué une concentration des éléments radioactifs; il est ainsi possible que ceux-ci aient conduit à la distribution de chaleur postorogène que nous avons observée et qui ressemble beaucoup à la distribution de chaleur originelle.
23 , 10 , 4 61 . , , - . .. , , . 80 000 2 / — 300° — 485 , , . 260 280° , 300 350 490 ( ). , ( 70– 80° ): 80–120 200–300 . , , 10 . , 660° . 300 3 . , , — . , — / — , . , 300° . - , , , 2° , 10 . 60°/ 30–40° /, 15–20°/. , - . , ; - , .
Teil einer von der Universität Göttingen angenommenen Habilitationsschrift. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|