首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temperature dependence of thermal conductivity and its impact on assessments of heat flux
Authors:I Lerche
Institution:(1) Department of Geological Sciences, University of South Carolina, 29208 Columbia, SC, USA
Abstract:The variability of sedimentary thermal conductivities with increasing temperature are explored for their impact on estimates of present-day heat flux and subsurface temperature gradient. For sand thicknesses less than about 10–20 km, or shale thicknesses less than about 40–80 km, the subsurface temperature is closely linearly proportional to the thermal resistance integral obtained in the absence of the temperature dependence of thermal conductivity. Estimates of heat flux should be increased (decreased) by about 5% for sands and decreased by about 1% for shales. For salt, because of the much shorter temperature range over which its thermal conductivity decreases, effects produced by the temperature dependence are more noticeable: heat flux should be increased by around 13%, salt thicknesses in excess of 5 km will yield major (around 30–100°C) changes in their temperature regimes solely as a consequence of the temperature-dependent thermal conductivity, and the linear increase of temperature with increasing thermal resistance is not an adequate approximation but has to be replaced with a more exact exponential increase.The impact of the variations, particularly in the case of salt, for geologic processes is briefly considered.
Keywords:Thermal conductivity  temperature dependence
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号