首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Direct measurement and matched-field inversion approaches to arrayshape estimation
Authors:Hodgkiss  WS Ensberg  DE Murray  JJ D'Spain  GL Booth  NO Schey  PW
Institution:Marine Phys. Lab., Scripps Instn. of Oceanogr., La Jolla, CA;
Abstract:Accurate knowledge of array shape is essential for carrying out full wavefield (matched-field) processing. Direct approaches to array element localization (AEL) include both nonacoustic (tilt-heading sensors) and acoustic (high-frequency, transponder-based navigation) methods. The low-frequency signature emitted from a distant source also can be used in an inversion approach to determine array shape. The focus of this paper is on a comparison of the array shape results from these three different methods using data from a 120-m aperture vertical array deployed during SWellEx-3 (Shallow Water evaluation cell Experiment 3). Located 2 m above the shallowest array element was a self-recording package equipped with depth, tilt, and direction-of-tilt sensors, thereby permitting AEL to be performed non-acoustically. Direct AEL also was performed acoustically by making use of transponder pings (in the vicinity of 12 kHz) received by high-frequency hydrophones spaced every 7.5 m along the vertical array. In addition to these direct approaches, AEL was carried out using an inversion technique where matched-field processing was performed on a multitone (50-200 Hz), acoustic source at various ranges and azimuths from the array. As shown, the time-evolving array shape estimates generated by all three AEL methods provide a consistent picture of array motion throughout the 6-h period analyzed
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号