首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal and density structure of polar plumes
Authors:A B C Walker Jr  C E Deforest  Richard B Hoover  Troy W Barbee Jr
Institution:(1) Departments of Physics and of Applied Physics and Center for Space Science and Astrophysics, Stanford University, 94305 Stanford, CA, USA;(2) Space Science Laboratory, NASA Marshall Space Flight Center, 35812, AL, USA;(3) Lawrence Livermore National Laboratory, 94550 Livermore, CA, USA
Abstract:Normal incidence multilayer coated EUV/XUV optical systems provide a powerful technique for the study of the structure of the solar corona. Such systems permit the imaging of the full solar disk and corona with high angular resolution in narrow wavelength bands that are dominated by a single line or a line multiplet excited over a well defined range of temperatures. We have photometrically analysed, and derived temperature and density information from, images of polar plumes obtained with a multilayer Cassegrain telescope operating in the wavelength interval lambda = 171 to 175 angst, which is dominated by FeIX and FeX emission. This observation was obtained in October 1987, and is the first high resolution observation of an astronomical object obtained with normal incidence multilayer optics techniques. We find that photometric data taken from this observation, applied to a simple, semi-empirical model of supersonic solar wind flow, are consistent with the idea that polar plumes are a source of the solar wind. However, we are not able to uniquely trace high speed streams to polar plumes. The temperatures that we observed are typically sim 1 500 000 K for both the plumes and the interplume regions, with the plume temperatures slightly higher than those of the surrounding atmosphere. Typical electron densities of the plume and interplume regions, respectively, are 5 × 109 cm–3 and 1 × 108 cm–3 at the limb of the Sun.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号