Mylonitic deformation of gabbro in the lower crust: A case study from the Pankenushi gabbro in the Hidaka metamorphic belt of central Hokkaido, Japan |
| |
Authors: | Kyuichi Kanagawa Hirobumi Shimano Yoshikuni Hiroi |
| |
Affiliation: | aDepartment of Earth Sciences, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan |
| |
Abstract: | The mylonitization of the Pankenushi gabbro in the Hidaka metamorphic belt of central Hokkaido, Japan, occurred along its western margin at ≈600 MPa and 660–700 °C through dynamic recrystallization of plagioclase and a retrograde reaction from granulite facies to amphibolite facies (orthopyroxene + clinopyroxene + plagioclase + H2O = hornblende + quartz). The reaction produced a fine-grained (≤100 μm) polymineralic aggregate composed of orthopyroxene, clinopyroxene, quartz, hornblende, biotite and ilmenite, into which strain is localized. The dynamic recrystallization of plagioclase occurred by grain boundary migration, and produced a monomineralic aggregate of grains whose crystallographic orientations are mostly unrelated to those of porphyroclasts. The monomineralic plagioclase aggregates and the fine-grained polymineralic aggregates are interlayered and define the mylonitic foliation, while the latter is also mixed into the former by grain boundary sliding to form a rather homogeneous polymineralic matrix in ultramylonites. However in both mylonite and ultramylonite, plagioclase aggregates form a stress-supporting framework, and therefore controlled the rock rheology. Crystal plastic deformation of pyroxenes and plagioclase with dominant (100)[001] and (001)1/2 slip systems, respectively, produced distinct shape- and crystallographic-preferred orientations of pyroxene porphyroclasts and dynamically recrystallized plagioclase grains in both mylonite and ultramylonite. Euhedral to subhedral growth of hornblende in pyroxene porphyroclast tails during the reaction and its subsequent rigid rotation in the fine-grained polymineralic aggregate or matrix produced clear shape- and crystallographic-preferred orientations of hornblende grains in both mylonite and ultramylonite. In contrast, the dominant grain boundary sliding of pyroxene and quartz grains in the fine-grained polymineralic aggregate of the mylonite resulted in their very weak shape- and crystallographic-preferred orientations. In the fine-grained polymineralic matrix of the ultramylonite, however, pyroxene and quartz grains became scattered and isolated in the plagioclase aggregate so that they were crystal-plastically deformed leading to stronger shape- and crystallographic-preferred orientations than those seen in the mylonite. |
| |
Keywords: | Mylonite Gabbro Dynamic recrystallization Reaction Crystal plasticity Grain boundary sliding |
本文献已被 ScienceDirect 等数据库收录! |
|