首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two contrasting magmatic types coexist after the cessation of back-arc spreading
Authors:Osamu Ishizuka  Makoto Yuasa  Rex N Taylor  Izumi Sakamoto
Institution:aInstitute of Geology and Geoinformation, Geological Survey of Japan/AIST, Central 7, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8567, Japan;bNational Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, UK;cSchool of Marine Science and Technology, Tokai University, 3-20-1 Orito, Shimizu, Shizuoka, 424-8610, Japan
Abstract:Amongst island arcs, Izu–Bonin is remarkable as it has widespread, voluminous and long-lived volcanism behind the volcanic front. In the central part of the arc this volcanism is represented by a series of seamount chains which extend nearly 300 km into the back-arc from the volcanic front. These back-arc seamount chains were active between 17 and 3 Ma, which is the period between the cessation of spreading in the Shikoku Basin and the initiation of currently active rifting just behind the Quaternary volcanic front. In this paper we present new age, chemical and isotopic data from the hitherto unexplored seamounts which formed furthest from the active volcanic front. Some of the samples come from volcanoes at the western limit of the back-arc seamount chains. Others are collected from seamounts of various sizes which lie on the Shikoku Basin crust (East Shikoku Basin seamounts). The westernmost magmatism we have sampled is manifested as a series of volcanic edifices that trace the extinct spreading centre of the Shikoku Basin known as the Kinan Seamount Chain (KSC).Chemically, enrichment in fluid-mobile elements and depletion in HFSE relative to MORB indicates that the back-arc seamount chains and the East Shikoku Basin seamounts have a significant contribution of slab-derived material. In this context these volcanoes can be regarded as a manifestation of arc magmatism and distinct from the MORB-like lavas of the Shikoku back-arc basin. 40Ar/39Ar ages range from 15.7 to 9.6 Ma for the East Shikoku Basin seamounts, indicating this arc magmatism started immediately after the Shikoku Basin stopped spreading.Although the KSC volcanoes are found to be contemporaneous with the seamount chains and East Shikoku Basin seamounts, their chemical characteristics are very different. Unlike the calc-alkaline seamount chains, the KSC lavas range from medium-K to shoshonitic alkaline basalt. Their trace element characteristics indicate the absence of a subduction influence and their radiogenic isotope systematics reflect a mantle source combining a Philippine Sea MORB composition and an enriched mantle component (EM-1). One of the most remarkable features of the KSC is that their geochemistry has a distinct temporal variation. Element ratios such as Nb/Zr and concentrations of incompatible elements such as K2O increase with decreasing age and reach a maximum at ca. 7 Ma when the KSC ceased activity.Based on the chemical and temporal information from all the data across the back-arc region, we have identified two contrasting yet contemporaneous magmatic provinces. These share a tectonic platform, but have separate magmatic roots; one stemming from subduction flux and the other from post-spreading asthenospheric melting.
Keywords:Rear arc  Izu–  Bonin–  Mariana arc  40Ar/39Ar dating  Pb double spike  Post-spreading volcanism  Igneous geochemistry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号