首页 | 本学科首页   官方微博 | 高级检索  
     

LS-SVM算法中优化训练样本对测深异常值剔除的影响
引用本文:黄贤源,翟国君,隋立芬,黄谟涛,欧阳永忠,柴洪洲. LS-SVM算法中优化训练样本对测深异常值剔除的影响[J]. 海洋测绘, 2010, 0(Z1): 57-62
作者姓名:黄贤源  翟国君  隋立芬  黄谟涛  欧阳永忠  柴洪洲
作者单位:解放军信息工程大学 测绘学院,河南 郑州 450052 ;海军海洋测绘研究所,天津 300061
基金项目:国家 863 项目(2007AA12Z326);国家自然科学基金项目(40974010,40971306)
摘    要:在验证趋势面滤波是最小二乘支持向量机算法取特定参数解的基础上,利用 LS-SVM 所构造的海底趋势面对测深异常值进行剔除。 为了克服 LS-SVM 解非稀疏性的缺点,同时抑制偏差较大的训练样本对海底趋势面构造的影响,提出并实现了一种基于局部样本中心距离的训练样本优化方法。 为了检验该算法的有效性,选取实测的多波束测深数据进行验证,结果表明在训练样本优化的基础上,通过调整 LS-SVM 的参数可以得到更为合理的海底趋势面,测深异常值地剔除也更为有效。

关 键 词:最小二乘支持向量机;趋势面滤波;局部样本中心距离;测深异常值

The Influence of Optimized Train Samples on Elimination of Sounding Outliers in the LS-SVM Arithmetic
HUANG Xian-yuan,ZHAI Guo-jun,SUI Li-fen,HUANG Mo-tao,OUYANG Yong-zhong,CHAI Hong-zhou. The Influence of Optimized Train Samples on Elimination of Sounding Outliers in the LS-SVM Arithmetic[J]. Hydrographic Surveying and Charting, 2010, 0(Z1): 57-62
Authors:HUANG Xian-yuan  ZHAI Guo-jun  SUI Li-fen  HUANG Mo-tao  OUYANG Yong-zhong  CHAI Hong-zhou
Abstract:After validating the trend filter is the special result to the LS-SVM arithmetic,eliminating the sounding outliers by the seafloor surface which constructed by LS-SVM . In order to solve the sparseness of LS- SVM results meanwhile restrain the influence of the sample-outliers. A new method of optimize samples by part samples center distance is presented. Some practical multi-beam data is chose to verify the correctness and rationality of the new method. The example shows that on the ground of the optimized train samples, the reasonable seafloor surface could be constructed by LS-SVM arithmetic,and then the outliers of multi-beam data could be eliminated effectively.
Keywords:
点击此处可从《海洋测绘》浏览原始摘要信息
点击此处可从《海洋测绘》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号