首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Propagating error in land-cover-change analyses: impact of temporal dependence under increased thematic complexity
Authors:Amy C Burnicki  Daniel G Brown  Pierre Goovaerts
Institution:1. Department of Geography , University of Wisconsin-Madison , Madison, WI, USA burnicki@wisc.edu;3. School of Natural Resources and Environment, University of Michigan , Ann Arbor, MI, USA;4. BioMedware Inc. , 3526 West Liberty Suite 100, Ann Arbor, MI, USA
Abstract:We examined the impact of temporal dependence between patterns of error in classified time-series imagery through a simulation modeling approach. This research extended the land-cover-change simulation model we previously developed to investigate: (1) the assumption of temporal independence between patterns of error in classified time-series imagery; and (2) the interaction of patterns of change and patterns of error in a post-classification change analysis. In this research, the thematic complexity of the classified land-cover maps was increased by increasing the number of simulated land-cover classes. Simulating maps with increased categorical resolution permitted the incorporation of: (1) higher-order, more complex spatial and temporal interactions between land-cover classes; and (2) patterns of error that better reproduce the complex error interactions that often occur in time-series classified imagery. The overall modeling framework was divided into two primary components: (1) generation of a map representing true change; and (2) generation of a suite of change maps that had been perturbed by specific patterns of error. All component maps in the model were produced using simulated annealing, which enabled us to create a series of map realizations with user-defined spatial and temporal patterns. Comparing the true map of change to the error-perturbed maps of change using accuracy assessment statistics showed that increasing the temporal dependence between classification errors did not improve the accuracy of resulting maps of change when the categorical scale of the land-cover classified maps was increased. The increased structural complexity within the time series of maps effectively inhibited the impact of temporal dependence. However, results demonstrated that there are interactions between patterns of error and patterns of change in a post-classification change analysis. These interactions played a major role in determining the accuracy associated with the maps of change.
Keywords:complexity  geostatistics  land-use and land-cover change  simulation  uncertainty
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号