首页 | 本学科首页   官方微博 | 高级检索  
     


Hierarchical self-organizing maps for clustering spatiotemporal data
Authors:Julian Hagenauer  Marco Helbich
Affiliation:1. Institute of Geography, University of Heidelberg, Heidelberg, Germanyhagenauer@uni-heidelberg.de;3. Institute of Geography, University of Heidelberg, Heidelberg, Germany
Abstract:Spatial sciences are confronted with increasing amounts of high-dimensional data. These data commonly exhibit spatial and temporal dimensions. To explore, extract, and generalize inherent patterns in large spatiotemporal data sets, clustering algorithms are indispensable. These clustering algorithms must account for the distinct special properties of space and time to outline meaningful clusters in such data sets. Therefore, this research develops a hierarchical method based on self-organizing maps. The hierarchical architecture permits independent modeling of spatial and temporal dependence. To exemplify the utility of the method, this research uses an artificial data set and a socio-economic data set of the Ostregion, Austria, from the years 1961 to 2001. The results for the artificial data set demonstrate that the proposed method produces meaningful clusters that cannot be achieved when disregarding differences in spatial and temporal dependence. The results for the socio-economic data set show that the proposed method is an effective and powerful tool for analyzing spatiotemporal patterns in a regional context.
Keywords:spatiotemporal data mining  self-organizing maps  dependence
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号