首页 | 本学科首页   官方微博 | 高级检索  
     

使用深度学习的遥感三分类分割问题的精度提高方法
作者单位:;1.成都大学建筑与土木工程学院
摘    要:传统的基于光谱相似性的分割方法无法将具有相似光谱特性的不同地物分割开来,并且会存在错分现象。利用深度学习直接进行三类地物的分割,其分割效果不能满足实际要求。本文改进了最新的UNet++模型,提出一种将三分类分割问题分解成两个二分类分割的方法来提高分割精度。首先将三类别样本制作为两个单类别样本;其次分别训练二分类网络,在测试集上将二分类结果输出为0~100之间的概率;最后将二分类结果按概率融合为三分类。实验结果表明,改进的UNet++模型精度有显著提升,同时将三分类化为二分类算法的分割结果,其各项评估指标也均有提升,平均交并比MIoU、平均精确度MP、平均召回率MR和平均像素精度MPA分别提高了0.3%、1.8%、1.5%和4.5%。

关 键 词:遥感影像  图像分割  深度学习  特征提取  三分类

A Method to Improve the Accuracy of Remote Sensing Three Classification Segmentation Based on Deep Learning
Abstract:
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号