首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Observations of eruption clouds from Sakura-zima volcano,Kyushu, Japan from Skylab 4
Authors:Jules D Friedman  Grant Heiken  Darryl Randerson  David S McKay
Institution:1. U.S. Geological Survey, Denver, Colo. U.S.A.;2. Los Alamos Scientific Laboratory, Los Alamos, N.M. U.S.A.;3. Air Resources Laboratory, NOAA, Las Vegas, Nev. U.S.A.;4. Lyndon B. Johnson Space Center, NASA, Houston, Texas U.S.A.
Abstract:Hasselblad and Nikon stereographic photographs taken from Skylab between 9 June 1973 and 1 February 1974 give synoptic plan views of several entire eruption clouds emanating from Sakura-zima volcano in Kagoshima Bay, Kyushu, Japan. Analytical plots of these stereographic pairs, studied in combination with meteorological data, indicate that the eruption clouds did not penetrate the tropopause and thus did not create a stratospheric dust veil of long residence time. A horizontal eddy diffusivity of the order of 106 cm2 s?1 and a vertical eddy diffusivity of the order of 105 cm2 s?1 were calculated from the observed plume dimensions and from available meteorological data. These observations are the first, direct evidence that explosive eruption at an estimated energy level of about 1018 ergs per paroxysm may be too small under atmospheric conditions similar to those prevailing over Sakura-zima for volcanic effluents to penetrate low-level tropospheric temperature inversions and, consequently, the tropopause over northern middle latitudes. Maximum elevation of the volcanic clouds was determined to be 3.4 km. The cumulative thermal energy release in the rise of volcanic plumes for 385 observed explosive eruptions was estimated to be 1020 to 1021 ergs (1013 to 1014 J), but the entire thermal energy release associated with pyroclastic activity may be of the order of 2.5 × 1022 ergs (2.5 × 1015 J).Estimation of the kinetic energy component of explosive eruptions via satellite observation and meteorological consideration of eruption clouds is thus useful in volcanology as an alternative technique to confirm the kinetic energy estimates made by ground-based geological and geophysical methods, and to aid in construction of physical models of potential and historical tephra-fallout sectors with implications for volcano-hazard prediction.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号