首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An Evolutionary Turbulent Model of Saturn's Subnebula: Implications for the Origin of the Atmosphere of Titan
Authors:Olivier Mousis  Daniel GautierDominique Bockelée-Morvan
Institution:
  • a DESPA, CNRS-UMR 8632, Observatoire de Paris, 5 place Jules Janssen, Meudon, F-92195, France
  • b Laboratoire de Planétologie et Géodynamique, CNRS-UMR 6112, Université de Nantes, 2 rue de la Houssinière, Nantes, F-44332, France
  • c DESPA, CNRS-UMR 8632, Observatoire de Paris, 5 place Jules Janssen, Meudon, F-92195, Francef1daniel.gautier@obspm.frf1
  • d ARPEGES, Observatoire de Paris, 5 place Jules Janssen, Meudon, F-92195, France
  • Abstract:We have elaborated an evolutionary turbulent model of the subnebula of Saturn derived from that of Dubrulle (1993, Icarus106, 59-76) for the solar nebula, which is valid for a geometrically thin disk. We demonstrate that if carbon and nitrogen were in the form of CO and N2, respectively, in the early subnebula, these molecules were not subsequently converted into CH4 and NH3 during the evolution of the disk, contrary to the current scenario initially proposed by Prinn and Fegley (1981, Astrophys. J., 249, 308-317). However, if the early subnebula contained some CH4 and NH3, these gases were not subsequently converted into CO and N2. We argue that Titan must have been formed from planetesimals migrating from the outer part of the subnebula to the present orbit of the satellite. These planetesimals were relics of those embedded in the feeding zone of Saturn prior to the completion of the planet and contained hydrates of NH3 and clathrate hydrates of CH4. It is shown that, for plausible abundances of CH4 and NH3 in the solar nebula at 10 AU, the masses of methane and nitrogen trapped in Titan were higher than the estimate of masses of these components in the primitive atmosphere of the satellite. If our scenario is valid and if our turbulent model properly describes the structure and the evolution of the actual subnebula of Saturn, the Xe/C ratio should be six times higher in Titan's atmosphere today than in the Sun, while the current scenario would probably result in a quasi solar Xe/C ratio. The mass spectrometer and gas chromatograph instrument aboard the Huygens Titan probe of the Cassini mission has the capability of measuring this ratio in 2004, thus permitting us to discriminate between the current scenario and the one proposed in this report.
    Keywords:Titan
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号