首页 | 本学科首页   官方微博 | 高级检索  
     


Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin,northwest China
Authors:Yong Xiao  Jingli Shao  Yali Cui  Ge Zhang  Qiulan Zhang
Affiliation:1.School of Water Resources and Environment,China University of Geosciences,Beijing,China;2.Xi’an Center of Geological Survey,China Geological Survey,Xi’an,China;3.Key Laboratory of Groundwater and Ecology in Arid and Semi-arid Regions,China Geological Survey,Xi’an,China
Abstract:In this study, analysis of hydrogeological conditions, as well as hydrochemistry and isotopic tools were used to get an insight into the processes controlling mineralization, recharge conditions, and flow pattern of groundwater in a typical arid alluvial-lacustrine plain in Qaidam Basin, northwest China. Analysis of the dissolved constituents reveals that groundwater evolves from fresh water (TDS =300–1000 mg/l) to saline water (TDS ≥5000 mg/l) along the flow paths, with the water type transiting from HCO 3?Cl–Na ?Mg to HCO 3?Cl–Na, and eventually to Cl–Na. Groundwater chemical evolution is mainly controlled by water–rock interaction and the evaporation–crystallization process. Deuterium and oxygen-18 isotopes in groundwater samples indicate that the recharge of groundwater is happened by meteoric water and glacier melt-water in the Kunlun Mountains, and in three different recharge conditions. Groundwater ages, estimated by the radiogenic (3H and 14C) isotope data, range from present to Holocene (~28 ka). Based on groundwater residence time, hydrogeochemical characteristics, field investigation, and geological structure distribution, a conceptual groundwater flow pattern affected by uplift structure is proposed, indicating that shallow phreatic water is blocked by the uplift structure and the flow direction is turned to the northwest, while high pressure artesian water is formed in the confined aquifers at the axis of the uplift structure.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号