首页 | 本学科首页   官方微博 | 高级检索  
     


Assessing spatial variability in soil characteristics with geographically weighted principal components analysis
Authors:Sandeep?Kumar  author-information"  >  author-information__contact u-icon-before"  >  mailto:kumar.@osu.edu"   title="  kumar.@osu.edu"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Rattan?Lal,Christopher?D.?Lloyd
Affiliation:1.Carbon Management & Sequestration Center, School of Environment & Natural Resources,The Ohio State University,Columbus,USA;2.School of Geography, Archaeology and Palaeoecology,Queen’s University,Belfast,UK
Abstract:Dimensionality reduction methods such as principal components analysis (PCA) provide a means of identifying trends in soil characteristics which may be represented by a wide range of variables. However, these characteristics may be highly spatially variable and so the results from PCA represent, in some sense, an “average” of locally distinct characteristics. One approach to account for these local differences is to introduce a geographical weighting scheme into the PCA process. In this paper, such an approach is assessed in the exploration of soil characteristics in the state of Pennsylvania, USA. Data from 878 georeferenced soil profiles which include different soil parameters (n = 12) were extracted from the National Soil Survey Center database. Where data are parts of compositions (e.g., percentages of sand, silt, and clay), analysis using raw data is not appropriate and such data were transformed using log ratios (specifically, balances). Single variables (i.e., those which are not parts of compositions) were logged. The first two principal components explain over 50% of the variance. The mapped values suggest marked spatial variation in soil characteristics, but it is not possible to assess which of these variables explain most variation in particular regions from the simple maps of raw variables. Geographically weighted PCA (GWPCA) provides additional information which is obscured by PCA, and it also provides a set of component scores and loadings at all data locations. The soil variable with the largest loading at most locations of Pennsylvania is the logged base saturation (BSln), and this supports the findings of the conventional PCA analysis. While BSln loads most highly in most of the eastern third, the middle and the south west of the state, the northwest is less spatially consistent in terms of the variables which explain most variation. For GWPC 1, the variable with the second largest loading at most locations (i.e., primarily the south and west) is CEC.B1 (the log ratio of Ca, Mg, and Na to K and EXACID), while CEC.B2 (the log ratio of Ca and Mg to Na), pHln (logged pH) and BSln dominate in other areas. The GWPCA results suggest that there is marked spatial variation in multivariate soil characteristics across Pennsylvania state and that results from standard PCA obscure this considerable variation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号