首页 | 本学科首页   官方微博 | 高级检索  
     

改进的P-SVM支持向量机与遥感数据分类
引用本文:张睿,马建文. 改进的P-SVM支持向量机与遥感数据分类[J]. 遥感学报, 2009, 13(3): 445-457
作者姓名:张睿  马建文
作者单位:1. 中国科学院,遥感应用研究所,北京,100101;中国科学院,研究生院,北京,100049
2. 中国科学院,遥感应用研究所,北京,100101
基金项目:中国科学院知识创新工程重要方向项目(编号:kzcx2-yw-313)和“863”计划项目(编号:2007AA12Z157)
摘    要:本文介绍了将P-SVM算法引入多光谱/高分辨率遥感数据的分类, 并且展示了卫星ASTER和航空ADS40数字影像分类的技术过程和结果验证。结果表明:P-SVM方法的分类精度不低于SVM, 并减少了时耗。

关 键 词:SVM   P-SVM   多光谱/高分辨率遥感数据   遥感数据分类
收稿时间:2007-09-19
修稿时间:2007-11-13

Improved support vector machine and classification for remotely sensed data
ZHANG Rui and MA Jian-wen. Improved support vector machine and classification for remotely sensed data[J]. Journal of Remote Sensing, 2009, 13(3): 445-457
Authors:ZHANG Rui and MA Jian-wen
Affiliation:1. Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China; 2. Graduate University, Chinese Academy of Sciences, Beijing 100049, China;1. Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China
Abstract:In this paper, the P-SVM algorithm was introduced into multi-spectral/high-spatial resolution remotely sensed data classification and it is applied to classification of ASTER satellite data and ADS40 aerial digital data. The experiments indicate that the P-SVM is at least competitive with the standard SVM algorithm in classification accuracy of remotely sensed data and the time needed is less.
Keywords:SVM   P-SVM   multi-spectral/high-spatial resolution remotely sensed data   classification
本文献已被 万方数据 等数据库收录!
点击此处可从《遥感学报》浏览原始摘要信息
点击此处可从《遥感学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号