首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工蜂群算法的岩体结构面多参数优势分组研究
引用本文:宋腾蛟,陈剑平,张文,项良俊,杨俊辉. 基于人工蜂群算法的岩体结构面多参数优势分组研究[J]. 岩土力学, 2015, 36(3): 861-868. DOI: 10.16285/j.rsm.2015.03.033
作者姓名:宋腾蛟  陈剑平  张文  项良俊  杨俊辉
作者单位:吉林大学 建设工程学院,吉林 长春 130026
基金项目:国家自然科学基金重点项目(No.41330636)
摘    要:岩体结构面优势分组是研究岩体力学性质与水力特性的基础,通常的分析方法是只根据产状进行划分。鉴于结构面其他特征对岩体力学性质的重要影响,考虑结构面倾向、倾角、迹长、张开度、表面形态5个特征参数,提出了基于人工蜂群算法的岩体结构面多参数优势分组方法。以样本总体离差平方和为目标函数,建立岩体结构面多参数优势分组的数学模型,应用人工蜂群优化算法求解,以目标函数值最小时的解作为聚类中心,并自动确定分组边界。对人工生成的结构面数据的计算结果验证了该方法的正确性,该方法的求解精度是令人满意的。最后,将该方法应用于怒江松塔水电站坝址区岩体结构面多参数优势组的划分,得到了较为合理的分组结果,进一步验证了此方法具有较高的运行效率与工程实用性。

关 键 词:岩石力学  岩体结构面  数据分组  聚类方法  人工蜂群算法  
收稿时间:2014-07-29

A method for multivariate parameter dominant partitioning of discontinuities of rock mass based on artificial bee colony algorithm
SONG Teng-jiao;CHEN Jian-ping;ZHANG Wen;XIANG Liang-jun;YANG Jun-hui. A method for multivariate parameter dominant partitioning of discontinuities of rock mass based on artificial bee colony algorithm[J]. Rock and Soil Mechanics, 2015, 36(3): 861-868. DOI: 10.16285/j.rsm.2015.03.033
Authors:SONG Teng-jiao  CHEN Jian-ping  ZHANG Wen  XIANG Liang-jun  YANG Jun-hui
Affiliation:College of Construction Engineering, Jilin University, Changchun, Jilin 130026, China)
Abstract:In geological engineering, dominant partitioning of discontinuities of rock mass is a fundamental work for mechanical and hydraulic behaviors analysis of rock mass. In common methods, only two characteristic parameters (dip and dip angle) are selected to identify discontinuity sets. Trace length, joint opening and surface morphology of discontinuities also influence the mechanical behaviors of rock mass. Therefore, a novel scheme for discontinuities classification is proposed based on multivariate parameters and artificial bee colony algorithm. The sum of deviations squares of the entire sample data is taken as an objective function. The artificial bee colony algorithm is used to search the optimal solution which makes the objective function achieve the minimum value. The optimal solution is the cluster centers. On this basis, a mathematical model is established. At the same time, the boundaries between different sets are determined automatically. The validation of the novel scheme is proved by results based on artificial data. The calculation precision of the method is satisfactory. Finally, the proposed method is applied to multivariate parameter dominant partitioning of discontinuities of rock mass at Songta dam site on the NuJiang River. The classification result verifies that the method is efficient and practical.
Keywords:rock mechanics  discontinuities in rock mass  data partitioning  clustering method  artificial bee colony algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号