首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Formal definition of a user-adaptive and length-optimal routing graph for complex indoor environments
Authors:Marcus Goetz  Alexander Zipf
Institution:Chair of GIScience, Department of Geography , University of Heidelberg , Heidelberg , Germany
Abstract:Car routing solutions are omnipresent and solutions for pedestrians also exist. Furthermore, public or commercial buildings are getting bigger and the complexity of their internal structure has increased. Consequently, the need for indoor routing solutions has emerged. Some prototypes are available, but they still lack semantically-enriched modelling (e.g., access constraints, labels, etc.) and are not suitable for providing user-adaptive length-optimal routing in complex buildings. Previous approaches consider simple rooms, concave rooms, and corridors, but important characteristics such as distinct areas in huge rooms and solid obstacles inside rooms are not considered at all, although such details can increase navigation accuracy. By formally defining a weighted indoor routing graph, it is possible to create a detailed and user-adaptive model for route computation. The defined graph also contains semantic information such as room labels, door accessibility constraints, etc. Furthermore, one-way paths inside buildings are considered, as well as three-dimensional building parts, e.g., elevators or stairways. A hierarchical structure is also possible with the presented graph model.
Keywords:3D indoor navigation  3D indoor routing  city modelling  formal definition  routing graph  buildings
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号