首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Landslides, Ice Quakes, Earthquakes: A Thermodynamic Approach to Surface Instabilities
Authors:Klaus Regenauer-Lieb  David A Yuen  Florian Fusseis
Institution:1. Multi-scale Earth System Dynamics, School of Earth and Environment, University of Western Australia, Crawley, WA, 6009, Australia
2. CSIRO Exploration and Mining, PO Box 1130, Bentley, WA, 6102, Australia
3. Department of Geology and Geophysics and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, U.S.A.
Abstract:The total rate of rock deformation results from competing deformation processes, including ductile and brittle mechanisms. Particular deformation styles arise from the dominance of certain mechanisms over others at different ambient conditions. Surprisingly, rates of deformation in naturally deformed rocks are found to cluster around two extremes, representing coseismic slip rates or viscous creep rates. Classical rock mechanics is traditionally used to interpret these instabilities. These approaches consider the principle of conservation of energy. We propose to go one step further and introduce a nonlinear far-from-equilibrium thermodynamic approach in which the central and explicit role of entropy controls instabilities. We also show how this quantity might be calculated for complex crustal systems. This approach provides strain-rate partitioning for natural deformation processes occurring at rates in the order of 10-3 to 10-9 s-1. We discuss these processes using examples of landslides and ice quakes or glacial surges. We will then illustrate how the mechanical mechanisms derived from these near-surface processes can be applied to deformation near the base of the seismogenic crust, especially to the phenomenon of slow earthquakes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号