Accurate computation of gravitational field of a tesseroid |
| |
Authors: | Toshio Fukushima |
| |
Affiliation: | 1.National Astronomical Observatory/SOKENDAI,Ohsawa, Mitaka,Japan |
| |
Abstract: | We developed an accurate method to compute the gravitational field of a tesseroid. The method numerically integrates a surface integral representation of the gravitational potential of the tesseroid by conditionally splitting its line integration intervals and by using the double exponential quadrature rule. Then, it evaluates the gravitational acceleration vector and the gravity gradient tensor by numerically differentiating the numerically integrated potential. The numerical differentiation is conducted by appropriately switching the central and the single-sided second-order difference formulas with a suitable choice of the test argument displacement. If necessary, the new method is extended to the case of a general tesseroid with the variable density profile, the variable surface height functions, and/or the variable intervals in longitude or in latitude. The new method is capable of computing the gravitational field of the tesseroid independently on the location of the evaluation point, namely whether outside, near the surface of, on the surface of, or inside the tesseroid. The achievable precision is 14–15 digits for the potential, 9–11 digits for the acceleration vector, and 6–8 digits for the gradient tensor in the double precision environment. The correct digits are roughly doubled if employing the quadruple precision computation. The new method provides a reliable procedure to compute the topographic gravitational field, especially that near, on, and below the surface. Also, it could potentially serve as a sure reference to complement and elaborate the existing approaches using the Gauss–Legendre quadrature or other standard methods of numerical integration. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|