首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Elevation of the olivine-spinel transition in subducted lithosphere: Seismic evidence
Authors:Sean C Solomon
Institution:Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Mass. U.S.A.
Abstract:The top of the olivine-spinel phase change in subducted oceanic lithosphere can be located by the travel times of seismic waves which have propagated through the slab. P-wave travel-time residuals from deep earthquakes in the Tonga island are observed at Australian seismic stations are grouped according to the depth of the earthquake. The change in mean residual with a change in earthquake depth is related to the velocity contrast between slab and normal mantle at that depth. The curve mean residual versus earthquake depth displays a region of markedly increased slope between earthquake depths of about 250 and 350 km. The most probable explanation of this observation is an elevation by 100 km of the olivine-spinel phase change within the relatively cooler slab. No evidence was found for vertical displacements within the slab of any deeper phase changes.A temperature contrast between slab and normal mantle of about 1,000°C at 250 km depth is implied. This finding confirms current thermal models for subducted lithosphere but is inconsistent with the global intraplate stress field unless only a few percent of the negative buoyancy force at subduction zones is transmitted to the surface plates.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号