首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Petrogenesis of the concealed Daqiling intrusion in Guangxi and its tectonic significance: Constraints from geochemistry,zircon U-Pb dating and Nd-Hf isotopic compositions
Authors:HuaiFeng Zhang  JianJun Lu  RuCheng Wang  DongSheng Ma  JinChu Zhu  RongQing Zhang
Institution:1. State Key Laboratory of Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
2. Uranium Resources Company Limited, China Guangdong Nuclear Power Corporation, Beijing, 100029, China
Abstract:The samples from the hidden Daqiling muscovite monzonite granite, which has recently been recognized within the Limu Sn-polymetallic ore field, have been analyzed for zircon U-Pb ages and whole rock geochemical and Nd-Hf isotopic compositions to discuss its genesis, source, and tectonic setting. LA-ICP-MS zircon U-Pb dating indicates that the granite crystallized in the late Indosinian (224.8±1.6 Ma). The granite is enriched in SiO2 and K2O and low in CaO and Na2O. It is strongly peraluminous with the A/CNK values of 1.09–1.20 and 1.4 vol%–2.7 vol% normal corundum. Chondrite-normalized REE patterns show slightly right-dipping shape with strongly negative Eu anomalies (δEu =0.08–0.17). All samples show enrichment of LILEs (Cs, Rb and K) and HFSEs (U, Pb, Ce and Hf), but have relatively low contents of Ba, Sr and Ti. The zircon saturation temperatures (T zr) are from 711 to 740°C, which are slightly lower than the average value of typical S-type granite (764°C). The granite has negative ? Nd(t) and ? Hf(t) values, which change from ?9.1 to ?10.1 with the peak values of ?9.2 to ?9.0 and from ?3.7 to ?12.6 with the peak values of ?6 to ?5, respectively. The T DM C (Nd) and T DM C (Hf) values are 1.74–1.82 Ga with the peak values of 1.73–1.75 Ga and 1.49–2.04 Ga with the peak values of 1.5–1.6 Ga, respectively. These characteristics reveal that the source region of the granite is dominantly late Paleoproterozoic to early Mesoproterozoic crustal materials. Seven inherited magmatic zircons are dated at the age of 248.6±4.3 Ma, which suggests the existence of the early Indosinian granite in Limu area. These zircons have the ? Hf(t) values of ?6.7–?2.3, similar to those of the Daqiling granite, implying the involvement of the early Indosinian granite during the formation of the Daqiling granite. Inherited zircon of 945±11 Ma has the ? Hf(t) and T DM(Hf) values of 8.7 and 1.14 Ga, respectively, compatible with those of the Neoproterozoic arc magmatic rocks in the eastern Jiangnan orogenic belt. Therefore we inferred that Neoproterozoic arc magma might have been involved in the formation of the Daqiling granite, and that the Neoproterozoic arc magma belt and continent-arc collision belt between the Yangtze and Cathaysia Blocks might have extended westsouthward to Limu region. It is proposed that the underplating of mantle materials triggered by crustal extension and thinning resulted in partial melting of crustal materials to form the Daqiling granite in the late Indosinian under post-collisional tectonic setting.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号