首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of grain scale alignment on seismic anisotropy and reflectivity of shales
Authors:Tor Arne Johansen   Bent Ole Ruud   Morten Jakobsen
Affiliation:Department of Earth Science and;Centre for Integrated Petroleum Research, University of Bergen, Allegt. 41, 5007 Bergen, Norway
Abstract:The elastic properties and anisotropy of shales are strongly influenced by the degree of alignment of the grain scale texture. In general, an orientation distribution function (ODF) can be used to describe this alignment, which, in practice, can be characterized by two Legendre coefficients. We discuss various statistical ODFs that define the alignment by spreading from a mean value; in particular, the Gaussian, Fisher and Bingham distributions. We compare the statistical models with an ODF resulting from pure vertical compaction (no shear strain) of a sediment. The compaction ODF may be used to estimate how the elastic properties and anisotropy evolve due to burial of clayey sediments. Our study shows that the three statistical ODFs produce almost identical correspondence between the two Legendre coefficients as a function of the spreading parameter, so that the spreading parameter of one ODF can be converted to the spreading parameter of another ODF. In most cases it is then sufficient to apply the spreading parameter for the ODF instead of the two Legendre coefficients. The effect of compaction on the ODF gives a slightly different correspondence between the two Legendre coefficients from that for the other models. In principle, this opens up the possibility of distinguishing anisotropy effects due to compaction from those due to other processes. We also study reflection amplitudes versus angle of incidence (AVA) for all wave modes, where shales having various ODFs overlie an isotropic medium. The AVA responses are modelled using both exact and approximation formulae, and their intercepts and gradients are compared. The modelling shows that the S‐wave velocity is sensitive to any perturbation in the spreading parameter, while the P‐wave velocity becomes increasingly sensitive to a perturbation of a less ordered system. Similar observations are found for the AVA of the P‐P and P‐SV waves. Modelling indicates that a combined use of the amplitude versus offset of P‐P and P‐SV reflected waves may reveal certain grain scale alignment properties of shale‐like rocks.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号